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Shift from Individuals to Teams
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Teams Increasingly dominate solo authors in the
production of knowledge

Wuchty, Stefan, Ben Jones, and Brian Uzzi. "The Increasing Dominance of Teams in the Production of Knowledge,"

Science, May 2007, 316:1036-1039.



Teams Are Everywhere

1. Film Crew 2. Sports Team 3. Sales Team

A ISR S

6. Development Team

Wuchty, Stefan, Ben Jones, and Brian Uzzi. "The Increasing Dominance of Teams in the Production of Knowledge,"
Science, May 2007, 316:1036-1039.



Networks Are Everywhere in Teams

1. Film Crew 2. Sports Team 3. Sales Team

LA Lakers

Wuchty, Stefan, Ben Jones, and Brian Uzzi. "The Increasing Dominance of Teams in the Production of Knowledge,"
Science, May 2007, 316:1036-1039.



Network Science of Teams

People collaborate as a team to collectively perform
some complex tasks
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Wuchty, Stefan, Ben Jones, and Brian Uzzi. "The Increasing Dominance of Teams in the Production of Knowledge,"

Science, May 2007, 316:1036-1039.



Research Questions

= Q1: What do high-performing teams share in
cOMmMon? [Uzzi+Sciencel3]

= Q2: How to foresee the success at an early
stage? [wang+Sciencel3]

= Q3: What's the optimal design for a team In

the context of networks?[Lappas+kKDD09,
Rangapuram+WWW13]

« S. Wuchty, B. Jones, and B. Uzzi. The Increasing Dominance of Teams in the Production of Knowledge, Science, 2007
« D. Wang, C. Song, and A.-L. Barabasi. Quantifying long-term scientific impact. Science, 342(6154): 127-132, 2013.

« T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social networks. In KDD, pages 467—-476, 2009.
« S. S. Rangapuram, T. Buhler, and M. Hein. Towards realistic team formation in social networks based on densest subgraphs. WWW




Roadmap

= Motivations and Background
mm) Part |: Team Performance Characterization
= Part Il: Team Performance Prediction

= Part lll: Team Performance Optimization
= Part IV: Open Challenges

= Demo

iy Arizona State University



Part I: Team Performance Characterization

= Collective Intelligence

= Virtual Teams in online games

= Network in Sports Teams

= Network in Github Teams

iy Arizona State University



Individual Intelligence

= Spearman’s @
= Individuals take a diverse set of
cognitive tasks

= The first factor extracted in a factor
analysis of these scores accounts for
30% to 50% of the variance

Woolley, Anita Williams, et al. "Evidence for a collective intelligence factor in the performance of human groups."

science 330.6004 (2010): 686-688



Collective Intelligence

= Definition: general ability of the group to
perform a wide variety of tasks

= Question: Is there a single factor for
groups?

Woolley, Anita Williams, et al. "Evidence for a collective intelligence factor in the performance of human groups."

science 330.6004 (2010): 686-688



Study 1

= 40 groups spend five hours together in the
laboratory

= Work together on a diverse set of tasks,
plus a more complex criterion task

= Also measured individual intelligence

Woolley, Anita Williams, et al. "Evidence for a collective intelligence factor in the performance of human groups."

science 330.6004 (2010): 686-688



Example Tasks

Task Description

Generate  Brainstorming. Come up with as many
uses for a brick as possible.

Choose Intellective. Members answer a set of
Raven’s Matrices questions as a group.

Negotiate Devise a shopping trip using a shared
car so that all members can get as
many of their items at the best places
possible.

Execute Typing task. Members must collectively
type difficult text into a shared online
document.

Scoring

Scored on quantity and quality of
ideas.

Scored on correctness.

Cumulative score of all group
members.

Scored on number of words
typed minus errors and skipped
words In limited time period.

Woolley, Anita Williams, et al. "Evidence for a collective intelligence factor in the performance of human groups."

science 330.6004 (2010): 686-688



Study 1

= Average Iinter-item correlation = .28

= First principal component accounts for 43%
of variance

= Factor loadings on the first factor are used
to calculate c score — strongly predicts the
performance on the criterion task

= Avg and max individual intelligence not
predictive of criterion task performance

Woolley, Anita Williams, et al. "Evidence for a collective intelligence factor in the performance of human groups."

science 330.6004 (2010): 686-688



Study 2

= 152 groups ranging from 2-5 members
= Replicate findings using broader tasks

M Collective Intelligence
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But what can predict c

= Average social perceptiveness

Playful Comforting Irritated Bored

“‘Reading the Mind in the Eyes” Baron-Cohen et al., 2001

Woolley, Anita Williams, et al. "Evidence for a collective intelligence factor in the performance of human groups."

science 330.6004 (2010): 686-688



But what can predict c

= The proportion of females positively
correlate with c

= Might be mediated by social
perceptiveness

= The variance in the number of speaking
turns negatively correlate with c

Woolley, Anita Williams, et al. "Evidence for a collective intelligence factor in the performance of human groups."

science 330.6004 (2010): 686-688



Virtual Teams

= Does collective intelligence exist in virtual
teams where face-to-face interaction Is not
available?

= Multiplayer Online Battle Arena (MOBA)
teams

Kim, Young Ji, et al. "What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in

League of Legends." CSCW. 2017.
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League of Legends

S TEAGUE.
4 LEGENDS

= A match is between two five-person teams
= Matchmaking algorithms vs. self-organize

= A team’s goal is to destroy the opponent
team’s base

Kim, Young Ji, et al. "What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in

League of Legends." CSCW. 2017.



Study Hypotheses

= H1: Cl will predict team performance In
League of Legends

= H2: social perceptiveness and proportion
of woman will be positively associated with
Cl in League of Legends teams

= H3: Cl will not be associated with equality
of contribution to conversation or decision
making in LOL teams.

Kim, Young Ji, et al. "What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in

League of Legends." CSCW. 2017.



Method

= Data for Cl, game performance, team
characteristics

= All team members individually completed
a guestionnaire (demographic,
psychological variables, cognition,affect)

= Test of Collective Intelligence

= |[n game data (performance metrics, play
history, statistics)

Kim, Young Ji, et al. "What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in

League of Legends." CSCW. 2017.



Sample

= Research advertisement on official
community boaro

= 248 teams completed all components
= 97% male, avg age Is 22

Kim, Young Ji, et al. "What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in

League of Legends." CSCW. 2017.



Results

= Cl| factor analysis

= Factor analysis of scores on all tasks In
TCI yielded one factor accounting for
28.28% of the variance

Kim, Young Ji, et al. "What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in

League of Legends." CSCW. 2017.



H1:Cl and Game Performance

MMR at Time of MMR after 6 Months

Study

Step 1 Step 2 Step 1 Step 2
Individual Play
Tilne -30333 .32*** .2?333 .28333
Team Play
Time =227 =227 =217 =227
Collective
Intelligence 147 157
R? 14 16 11 14
R? Change 02" .02°

Kim, Young Ji, et al. "What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in

League of Legends." CSCW. 2017.



H1:Cl and Game Performance

30
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| | I 1
Bronze Silver Cold Platinum and above

Estimated Marginal Means of Collective Intelligence

Highest Tier

Kim, Young Ji, et al. "What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in

League of Legends." CSCW. 2017.



H2: Women, Social Perceptiveness and ClI

= ClIs positively correlated with the number
of woman in the team (r=0.18, p=0.005)

= Cl Is positively correlated with social
perceptiveness (r=0.14, p=0.03)

Kim, Young Ji, et al. "What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in

League of Legends." CSCW. 2017.



H3: Communication Processes and CI

= Standard deviation of chat lines and chat
word count, is not significantly correlated
with CI

= Cl negatively correlates with
= perceived equality in decision making,
= frequency of game-specific communication
= strategy-related process

= team learning behavior

Kim, Young Ji, et al. "What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in

League of Legends." CSCW. 2017.



Network in Sports Teams

Passing accuracy
W N — () - N w

Flow Network:
Node: players
Arc weights: passing success rate btw two players

Duch, Jordi, Joshua S. Waitzman, and Luis A. Nunes Amaral. "Quantifying the performance of individual players in

a team activity." PloS one 5.6 (2010): e10937.



Team Performance

= Match performance of player: normalized
value of log of the player’s betweenness

centrality

= Team performance: avg performance of
the top k players

= Difference between two teams indicate
winning probability

Duch, Jordi, Joshua S. Waitzman, and Luis A. Nunes Amaral. "Quantifying the performance of individual players in

a team activity." PloS one 5.6 (2010): e10937.



Results
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Duch, Jordi, Joshua S. Waitzman, and Luis A. Nunes Amaral. "Quantifying the performance of individual players in

a team activity." PloS one 5.6 (2010): e10937.



Network Structure in Github

= Network Construction

= Project-project network: two projects are
connected If they share at least one
developer

= Developer-developer network: two
developers are connected If they work
together In at least one project

F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, Network Structure of Social Coding in GitHub. CSMR 2013



Github Data

= 100,000 projects retrieved from GitHub API
= 1,161,522 edges in the project-project
network

= 23,678,455 edges in the developer-
developer network

F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, Network Structure of Social Coding in GitHub. CSMR 2013



Project-project network
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The diameter of the largest connected component: 9
Avg shortest path: 3.7

F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, Network Structure of Social Coding in GitHub. CSMR 2013



Developer-developer network
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The diameter of the largest connected component: 5
Avg shortest path: 2.47

-> compare with avg shortest path of Facebook: 4.7
Social coding enables substantially more collaborations
among developers

F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, Network Structure of Social Coding in GitHub. CSMR 2013



Influential Projects

Project url PageRank

https://github.com/mxcl/homebrew (.0009862

https://github.com/rails/rails 0.0006378

https://github.com/lifo/docrails 0.0006370

https://github.com/joyent/node 0.0002161

https://github.com/rubinius/rubinius ~ 0.0001678
Table 1

TOP 5 MOST INFLUENTIAL PROJECTS

F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, Network Structure of Social Coding in GitHub. CSMR 2013



Influential Developers

Developer PageRank

Joshua Peek josh[AT]joshpeek.com  0.00009536

Aman Gupta aman[AT]tmmI.net  0.00008860

Steve Richert steve.richert|AT]gmail.com  0.00008850

Michael Klishin michaelklishin[AT]me.com  0.00008170

Josh Kalderimis  josh.kalderimis[AT]gmail.com  0.00008163
Table II

TOP 5 MOST INFLUENTIAL DEVELOPERS

F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, Network Structure of Social Coding in GitHub. CSMR 2013



The Effect of Team Network Connectivity

Pair-wised team similarity
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"Happy families resemble each other; each unhappy family is unhappy in its
own way."
- Leo Tolstoy, Russian writer



Roadmap

= Motivations and Background
= Part I: Team Performance Characterization
=) Part |I: Team Performance Prediction

= Part lll: Team Performance Optimization
= Open Challenges

= Demo

iy Arizona State University



Part |I: Team Performance Prediction

= Citation Count Prediction

= Mechanistic Model for Scientific Impact
= | ong-term Performance

= Performance Trajectory

= Joint Modeling of Parts and Whole

iy Arizona State University



Scientific Teams n

= Science of science

= Prediction of future impact of scientific
works

= Implications
= Research grants evaluation
= Scholarly awards dispensing

iy Arizona State University



Scientific Impact
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(a). The growing volume of literatures.  (b). Distribution of literature citation.

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to

estimate future citations for literature. CIKM, 2011.



Factors driving scientific impact

= Content
= Author
= Collaboration social network
= Venue
= Temporal

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to
estimate future citations for literature. CIKM, 2011.

Yuxiao Dong, Reid A. Johnson, and Nitesh V. Chawla. 2015. Will This Paper Increase Your h-index?: Scientific
Impact Prediction. WSDM, 2015.




Content Features

= Novelty: difference between a particular
paper and the other publications

= Topic Rank: popular topics accumulate
more citation counts than unpopular ones

= Diversity: the breadth of an article from its
topic distributions

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to

estimate future citations for literature. CIKM, 2011.



Content Features

i)

Average Citation Count

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to
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estimate future citations for literature. CIKM, 2011.



Author Features

= Author Rank: “fame” of an author ensures
the amount of citations

" H-Index
= Past influence of authors
= Maximum past influence

= Total past influence

= Productivity: the number of published
papers

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to

estimate future citations for literature. CIKM, 2011.



Author Features — con’t

= Sociality: PageRank-like measure in co-
author network

= Authority: PageRank-like measure in paper
citation network and transmit paper
authority to all its authors

= Versatility: topic breadth of an author’s
research

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to

estimate future citations for literature. CIKM, 2011.



Author Features
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_Author Features
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Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to
estimate future citations for literature. CIKM, 2011.




Venue Features

= Venue Rank: prestigious venues attract
more focus

= Venue Centrality: PageRank-like measure
INn the venue citation network

= Past Influence of venues:
= Maximum past influence

= Total past influence

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to

estimate future citations for literature. CIKM, 2011.



Venue Features o

160 100
' | * Venuz vs #éwg. Cilntion +  Venue Cenirality vs Awg. Citation
o 140 % s
5 i =
'3 120 % 5
£ 100 c
= —
1]
£ = N
L a0
a &0 i}
LT Cn
o o
o A0 o]
S = 04
< =1
. 2
) 3 4
Venue Rank Venue Centrality
100
Mae Citaltion vs Awg. Criafon
- 140 1 - Towl Citation Counts vs Avg. Cation
' )
B:'l -
= - Ci20
R 3
(] - o) :
C O100 -
O B+ " <
E .= & = 80 4
O n : S ;
':L'Im - “-1". " .r:‘ ot (0‘26(I<
o . . w . . o .
0 e o)
o ¥ --"'.-"'-j' eitig p P © 40 -
20| RS Ry 2
E ""'f . o 1 l"".. ' '.-u = )
:.}.HE 1!_.;1:,_“[:: __:: F_-‘.- h] < 20

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to
estimate future citations for literature. CIKM, 2011.



Temporal Feature

= Recency: the number of years since the
article was published
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Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to
estimate future citations for literature. CIKM, 2011.




Data Description

= AMiner (https://aminer.org/citation)
= 1,558,499 papers in CS
= 916,946 researchers (from 1960-2010)
= Co-author network (3,063,257 edges)
= Citation network (20,083,947 edges)

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to

estimate future citations for literature. CIKM, 2011.


https://aminer.org/citation

Set-up

= Test set: 10,000 papers from year 2009

= For training, only use features available up
to year 2008

= Evaluation Metric
= Coefficient of determination R

_ 2-9)?
X (y-y)?

IRZ

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to

estimate future citations for literature. CIKM, 2011.



Predictive Models

= KNN

= |inear Regression

= Support Vector Regression

= Classification and Regression Tree (CART)
= Gaussian Process Regression (GPR)

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to

estimate future citations for literature. CIKM, 2011.



Performance Comparisons

[-Year FIP (Af=1)

5-Year FIP (Af=5)

10-Year FIP (At=10)

Methods || FData | RData | Combined | FData | RData | Combined | FData | RData | Combined
kNN 0.515 | 0.311 0.593 0.681 0.268 0.734 0.649 | 0.161 0.767
LR 0.625 | 0.479 0.692 0.798 | 0.134 0.811 0.885 | 0.123 0.912
SVR 0.590 | 0.268 0.644 0.723 | 0.162 0.771 0.813 | 0.111 0.861
CART 0.679 | 0.441 0.713 0.797 | 0.203 0.834 0.852 | 0.128 0.905
GPR 0.601 0.349 0.668 0.823 | 0.153 0.869 0.894 | 0.130 0.927

Accuracy increase as Vt increases
Non-linear regression achieves better performance
GPR performs the best

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to

estimate future citations for literature. CIKM, 2011.




Feature Analy_sis

FData RData
Feature +Add | —Drop | +Add | —Drop
Novelty 0.059 | 0.754 | 0.066 | 0.751
T.Rank 0.079 | 0.783 | 0.135 | 0.678

Diversity 0.157 | 0.661
A .Rank 0.593 | 0.406 | 0.227 0.626
H-Index 0.244 | 0.611 0.186 | 0.663

Productivity || 0.198 0.652 0.187 0.684

MPIA 0.585 | 0419 | 0.363 | 0.596
TPIA 0.048 | 0.805 | 0.037 0.811
NOCA 0.056 | 0.794 | 0.158 | 0.643

Sociality 0.249 | 0.597 0.181 0.632
Authority 0.155 | 0.668 | 0.178 | 0.615
Versatility 0.160 | 0.649 | 0.139 | 0.665

Recency 0.101 0.738

V.Rank 0.337 | 0.603 | 0.225 0.648
V.Centrality 0.049 | 0.793 0.067 0.776
MPIV 0.329 | 0.616 | 0.196 | 0.667
TPIV 0.023 | 0.815 | 0.021 0.823

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: learning to

estimate future citations for literature. CIKM, 2011.



Lack of predictability in citation patterns
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Citation history of 463,348 papers extracted from the
Physical Review corpus

Wang, Dashun, Chaoming Song, and Albert-Laszl6 Barabasi. "Quantifying long-term scientific impact.” Science

342.6154 (2013): 127-132.



Preferential attachment

= Highly cited papers are more likely to be

- - 10
cited again [ a Year 1980 ]
® Year 1985 v
8t Year 1990 v
I v  Year 1995 v v
ch 6l Year 2000
N is
= 9 .
] . u ®
g 4 "Y i . .l.
O ¥ B °
Cc |
< 2f "“:3""
@]
|

Wang, Dashun, Chaoming Song, and Albert-Laszl6 Barabasi. "Quantifying long-term scientific impact.” Science
342.6154 (2013): 127-132.




Temporal Citation Trend

= | ong-term decay follows a log-normal
survival probability ~ © 10 _

N

= /| mm
T 0.6 -ﬁ r.
iy 0

l (Int = ;)" =g I "\

P;i(t) = = —CXp ~— =~ \
V 210t 20; S o4 A
: \
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=%

Wang, Dashun, Chaoming Song, and Albert-Laszl6 Barabasi. "Quantifying long-term scientific impact.” Science
342.6154 (2013): 127-132.



Fithess n of a paper

= The paper’'s importance relative to its peers

Wang, Dashun, Chaoming Song, and Albert-Laszl6 Barabasi. "Quantifying long-term scientific impact.” Science

342.6154 (2013): 127-132.



Mechanistic Model

= The probability that paper i Is cited at time t
after publication Is

[1;(¢) ~ n;ciPi(¢)

= Solving for the cumulative number of
citations acquired by paper i at time t

r ﬁgr (In rﬁ—. !-lr') -;"w'".]J' (In rﬁ—. _uf-)
c; =m|e "/ =1 =m|e /=1

= ®(t)
(3) ‘ =1 (A )
where t=(nt- Al—)/a_l
ox) = e 2 r Pay  (4)

Arizona State University



Model’s validity

F o G s

L Science A M ©
S 0.8p 20+ — L 7
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6 {]6 ;,_r._t 3 -ﬁ:/-ll R E 15
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Physical Review
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Rescaled Time t [Year]

Wang, Dashun, Chaoming Song, and Albert-Laszl6 Barabasi. "Quantifying long-term scientific impact.” Science

342.6154 (2013): 127-132.



Predicting future impact

A 300 E
| © Real data 300 | © Realdata
Prediction 60 O Prediction TS —
250 0RO S 250 F ==
= a P 0=
= ] N
.2 200 .2 200 &
+— - 'S
S g+ § =
&) O 150 F ,;{? I
B g | f}f 2
© © 100k & =
=~ = .E(? =~ 0 O (0.8
L '(_C'JJ ﬁgﬂjﬂ&——
g 0 ©%°
S0F & S
I ;d ?ﬁi@so 0 oM O e e e 0 S 0 o __0_ 08
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0 5 10 15 20 25

Time

Measure the fraction of papers that fall within the
envelope for all PR papers published in 1960

With T-train=5, 6.5% left the envelope 30 years later

Wang, Dashun, Chaoming Song, and Albert-Laszl6 Barabasi. "Quantifying long-term scientific impact.” Science

342.6154 (2013): 127-132.



Performance Prediction: Setup

= Given: Initial Performance of a team

= Predict:
= (1) Long-Term Performance [KDD15]
= (2) Performance Trajectory [SDM16]

4 Performance
(e.g., citations)

Time
>

« L. Li, and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015: 655-664

« L. Li, H. Tong, J. Tang and W. Fan: “iPath: Forecasting the Pathway to Impact”. SDM 2016



Performance Prediction: Challenges

" C1: Scholarly feature design
= C2: Non-linearity

= C3: Domain heterogeneity

= C4: Dynamics

« L. Li, and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015: 655-

664



C1: Scholarly Feature Design

FapEstifer \\\\
L - ’E _' ;§\§\\§

~

Root Mean Squared Error
N

Obs.: Adding content features brings little improvement

Tl Arizona State University



C2: Non-linearit

1.6 T T T T

o
)

°
N

o
N

Root Mean Squared Error

Non-linear Methods Linear Methods

Obs.: Non-linear methods > linear ones

iy Arizona State University



o

C3: Domain heterogeneity @ =

350 _ _ : : @ e
pick up fast in early years
300
% 250
=
8 200
O
8 150 «——Delayed pattern
'© 100} -
O
U) L
50
I:: 2 Fi— L L —
0 10 20 a0 A0 50 60 70 a0
Age

Obs.: Impact of scientific work from different domains
behaves differently

iy Arizona State University




C4:. Dynamics

arXiv monthly submission rates

# Submissions

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Q: How to quickly update the predictive model?

iy Arizona State University



IBall — Formulations

= Optimization Formulation

Within-Domain Model
AL

Ng [ Mg \
o min 3 LXO,w), YO+ 3 o(w)
3 yeregltd nd . 1=1
0 3 Agg(wtd, wi)
1=1 7= 1N
= Remarks Cross- Domaln Consistency

= Within-Domain Model: regression/classification, linear/non-linear

= Cross-Domain Consistency: similar domains have similar models

Question: how to instantiate such consistency?
« L. Li, and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015: 655-

664



IBall — linear formulation

nd . . . Mg .

| min 3, [XOwD - YOZ+ 250 w3

Details: [w®,i=1,..,nq =1 =
ng ng

+0Y Y Ayllw® — wl)|2

i=174=1 S , /

Intuitions: similar domains (large A;;)

—» same feature has similar effect (small |w — w|2)

iy Arizona State University



3 KD yrld) —
1=1 -

+0 ). Z A

1=1 9=

Detalls:

Predicted output Predicted output
(domaini—domaini) (domainj—domain i)

Intuitions: similar domains (large A;;)

—» similar predicted outputs (small [K®w® — K w2

iy Arizona State University



IBall — Closed-form Solutions

= Closed-form Solution

w=S"1Y
= Ball — linear:
W = [W(1>; . ;W( K )] Y = [X(l)/Y(l); Xk )y (k )]
i-th block column j-th block column
o/ . K 1- ocC
S=1... X(l) X(l) -+ (9 Z Aij + )\)I —QAijI th block
j=1 row
: T 3 d: # of features; k: # of domains
Time Complexity: O((dk) ) (dk: in the order of 10 or 100)
DATA I

Lab Arizona State University



IBall — Closed-form Solutions
= Closed-form Solution
w=S"1Y

= Ball — non-linear:
w=[w®. L wlk)] oy y®, .yt

i-th block column j-th block column
Kk . ‘s i-th block
S=1... (1 + 6 Z Aij)K(l) + Al —QAin(lJ)
=1 row

- o 5. N:total # of training examples e o
Time Complexity: O(n") (in the order of millions)

iy Arizona State University



IBall — Scale-up with Dynamic Update

= Key idea #1: Approx S by low-rank approx

" Detalls:
=S, Y
Sit1 ~ U1 A U, Wit t+1 7 it
o = U1 A Ui Yo
(Overall: O(n?r) ) (Overall: O(nr) )

= Complexity: O(n?) = O(n’r + nr)
= Benefit: avold matrix inverse

Question: how to avoid re-computing low-rank
approx at each time step?

iy Arizona State University



IBall — Scale-up with Dynamic Update

= Key idea #2: Incrementally update the low
rank structure of S

- Deta”s ... ...
e BEE - N -
pink ﬁfwa;tttﬂ HER HEEE
Stt1 S, AS

(low rank, sparse)

= Complexity: O(n’r) — O((n +m)(r* +72)),r < n

= Benefit: avoid re-computing low-rank approx

« L. Li, H. Tong, Y. Xiao, W. Fan. Cheetah: Fast Graph Kernel Tracking on Dynamic Graphs. SDM

2015.



Paper Citation Prediction Performance

1.8 I I I I I

—5F— IBall-fas1
w —ale— |Ball—karmnel
O 1.7F HE"'I‘IBI—EEDE[EIB 1
: [ = Karnel-combine
IBall-linear
LIJ 1.6 LIF'HJE.T—EEFIE.TEJEE
== Linear—combine
O * W W W — Brodiet o
9 1.5 —— Sum of first 3 years ||
©
—&—8. a8 f-g o 5 88588555
31_{3———5—_5 e
1.3
-
@ -
Dz
= 11} .
8 BT —— OO SO
o f ]
S e g 0 o W W ?}IBa” .
0.8 ' ' ' ' - L Hnon-linear
1000 2000 3000 4000 5000 BO00 FOO0 BOOD 8000 10000 19000
Proposed Sol. Training Size

Datasets: AMiner (2,243,976 papers, 1,274,360 authors,
8,882 venues)




pick up fast in early years

‘/Delayed pattern

100
50 !
o LS
10 20 30

1 ° A;De

Scaled Citation

Error Analysis

109

40.8

40.7

10.6

Actual Normalized Citation

0 1 2 3 - 5 6 7

Predicted Normalized Citation

Obs.: bright region at x =y

« L. Li,and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015



Running Time Comparison

—%F— iBall-fast

—dre— Ball-kernel

10° Kernel-separate

—— Kernel-combine
Linear—separate

—— Ball-linear

—E— Linear—combine

(Blall-kernel

rnnel-combine

=
=2

L=}

-
-

—
o

{Ball-fast

"linear
models

Running Time (second)

i

o 2.5 3

Tralnlng Slze

Obs.: iBall-fast outperforms other non-linear methods

iy Arizona State University



Quality vs. Speed

1.1

’_‘: ———5um of first 3 years
1.0

RMSE

0.851 Hemel—cc:mbinek

IBall-fast

-— Kernel-separate ‘X

0.8 u

iBall-kernel— —J-.*

= 0.1 10’ 107 10" 1o*

Running Time (second)

Obs.: iBall-fast: good trade-off between quality and speed

iy Arizona State University



Scaled Citation

IBall: Summary

380 pick up fast in early years
300
250
200
150 +—Delayed pattern
100 J

50 !

BE - 10 20 30 A4B 50 60 70 80

= Goal: predict long-term impact of scholarly entities

= Solutions: joint predictive model (iBall)

@feature @non- @domain- dynamics

SEEmgEE design linearity heterogeneity
. first 3 years’| kernel domain low-rank
Tactics 7 . . . .
citation trick consistency |approximation
= Results:

= |Ball joint models better than separate versions
= |Ball-fast updates efficiently and accurately

L. Li, and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015: 655-

664



Foresee the Pathway to Impact

Learning representations by back-propagating errors

Authors David E Rumelhart, Geoffrey E Hinton, Ronald J Williams
Publication date 1986
Jourmmal  Mature
Volume 323
Pages 533-536 Predlct ”,f 904

- 737
= " 692 7
080 o A,_A_a_ae- 506 532 77

: . - . .- 1):%

: ----- ’.‘-’_,."'
mjjlj%@ﬂ%%?%//? %
EIEH 1995 1996 1987 194 *I 2000 2004 2002 2003 2004 2005 2006 2007 2008 112

Implications of forecasting the pathway to impact
« Tracking research frontier

 Invoking early intervention

\\\\\\
W
\\\\\\\\\\
A
= AT

=
o ]

201

=1
[ ]

i._.i

]
i._.i
=

I'._.i

Question: how to foresee the impact pathway at the
early stage?

L. Li, H. Tong, J. Tang and W. Fan: “iPath: Forecasting the Pathway to Impact”. SDM 2016




Modeling Scientific Impact

= Effective scholarly feature design
[Yan+CIKM11]

" Mechanistic model for the citation
dynamics of individual papers
[Wang+Sciencel3]

= |Ball- Joint Predictive Model for long-
term impact prediction [LI+KDD15]

All for Point Prediction (=

iy Arizona State University



Challenges

= C1: Output Space -- Correlation

=_Possible solution: multi-label/task learning

= Challenge: correlatlon unknown

Pre |ct -

.1415161?181 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2043 2014 2015

UL I I

2. Parameter Space -- Smoothness
= Possible solution: linear dynamic system

= Challenge: transition process unknown

iy Arizona State University



Design Objectives

= D1: Prediction Consistency (for C1)

Exploit the correlation in output space

Infer the |mpact relation, structure

" e
. o Pt CH
bt et ':"-. X et

35 o .,

. Parameter Smoothness (for C2)

Apply linear transition to adjacent parameters

Learn the linear transition process

iy Arizona State University



IPath -- Formulations ¢-6-503

53]

ARA

" Optimization Formulations
IPrediction Consistency

1min [E[JEF)%ICWSS ] [O‘S‘S‘Awg Wszj)]

W.B A
1=1-7=1

‘\{5 Z HWt Bw,;_1 Hz]Parameter Smoothness

+7HB—IHF+5ZQ wi) +€l|A — Agllm

L =1 _J
Y

" Remarks Regularizations

= Prediction Consistency: similar impacts have similar models

= Parameter Smoothness: model parameters at adjacent time
steps have linear transformation

iy Arizona State University



IPath — linear formulation ﬁﬁi

53]

- oL LT
" Detalls:

L
WH)léI)lA IXW — Y% + oz;::l J;l[Az'jHXWi — Xw, |3 ]

[
+5 22 lwi — Bw_1|5 + (B - I||% \
t=

[
+0 ; |will5 + €el|A — Aol 7
" |Intuition:

Similar impacts (large A ;)

=) Similar Predictions (small | Xw, — Xw.|2)

iy Arizona State University



IPath — non-linear formulation m

53]

. o
" Detalls:

[ [
Jnin KW = Y[3 +a 3> 3 |Ay[Kw - Kw; 3 |

i=1j=1

l
+6 ZQ lwe — Bwy—1[j3 + (B - I||7
t=

[
+0 32 wiKw; +¢[|A — Ag|
1=1

" |Intuition:

Similar Impacts (large A,L-j)

m=) Similar Predictions (small | Kw,; — Kw||2)

iy Arizona State University



IPath — Optimization Solutions

= Alternating Optimization Strategy

Optimize
for W

L
L1 _ , 2
] X Y% + A Xw; — Xw
min o ) 30 Ay Xwi — Xw |7 e A - Aoll3 | oo 2y o AuylXows = Xwilz
i=1j=1 z |
+5 t; W — Bw; 1[5 + 6 ; |lw;||3

Optimize Optimize
for A for B

C—

l
mPin B3 lwe —Bw_1|3 + 7B —1||%
=2

iy Arizona State University



Experiment Setup

= Datasets: AMiner (2,243,976 papers,
1,274,360 authors, 8,882 venues)

= Tas
prec

K: Observing the first 5 years’ citations,
Ict yearly citations from year 6 — 15

= Eva
Erro

uation Metric: Root Mean Squared
r (RMSE)

iy Arizona State University



Paper Impact Pathway Prediction

—O— ind-linear
ind—kernel
16 —6— MTL-robust[]
MLRL
—8— iBall-linear ||
—¥— iBall-kernel
—P— iPath—lin
iPath—ker

RMSE
@

T —

15 | 30 45 60 75 90
IPath-ker  Training Size (%)
Obs: iPath-ker performs the best among all the

competitors

iy Arizona State University



Author Impact Pathway Prediction

14

—O— ind-linear
ind—kernel
—O— MTL-robust
MLRL
—8— iBall-linear
—¥— iBall-kernel
—P— iPath—lin
iPath—ker

13

12} -

r e —

IPath-ker 1

1IO 1l5 2IO 2I5 3IO 35
Training Size (%)

Obs: iPath-ker performs the best among all the

competitors

iy Arizona State University



Sensitivity Analysis

14 T T T T T T 14

135} | 135l
13} ] 13}

125}
W2
L 115¢
T gt

10.5¢

® &—9 9.5}

9 | | | | | | 9 1 1 1 1 1 1 1 1
0.001  0.01 0.1 1 10 100 1000 10000 10 20 30 40 50 60 70 80 90 100

o B
RMSE vs. « RMSE vs. B

Obs: iPath Is stable in a large range of parameter
spaces

iy Arizona State University



Performance Gain Analysis

RMSE Paper Impact | Author Impact
@ 9.602 11.608
®+® 0.507 11.548
®+@+B 0.335 11.489
©Q+@+06) +® 9.171 11.391

Basic form z l@relatlon
min |[|[KW — Y||F]+[ a3 A wanszjn%]

W.B.A
(3)transition
522\|Wt Bw,;_ 1|| +~v|IB — I3

z inferring
5 WKW, [|A Ao|F]
1=1

Obs: relation, transition and inferring are all beneficial
In Improving the prediction

iy Arizona State University



11
min [ XW = Y[[F +a 3 3 Ayl Xw; —Xw, |3
) i=1j=1

Robustness to Noise in Ay & seiom

1 N
+6 S lwill2 + ellA (A2
S=il N

)
el

—8— iBall-linear
—b— iPath-lin

[f B P D
9-5 | | | |
0 1 2 3

Noise Level

Obs: IPath degenerates gradually with the noise level

iy Arizona State University



IPath: Summary

1994 1995 1996 1997 19965 1999 2000 2

994 199 b : 001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Drivingfactorsll ll l l ll l —_——— .=

= Goals: predict the pathway to impact

= Solutions: iIPath prediction model

= Design objectives: A

= Prediction Consistencyss®

= Parameter Smoothnessaey

= Lower error than competitors 5=

= Results:

= Robust to noise in impact relations

iy Arizona State University



From the Ancient Philosophy i

= Whole: a collection of parts

= Parts: individual elements

= Aristotle’s hypothesis:

— whole > sum of parts

Liangyue Li, Hanghang Tong, Yong Wang, Conglei Shi, Nan Cao and Norbou Buchler. Is the Whole Greater Than

the Sum of Its Parts? KDD, 2017.



Part-Whole iIn Team Science

Film Crew Sales Team

Whole — Team
Parts — Team members

iy Arizona State University



Part-Whole Beyond Teams

Autonomous System
Whole: system
Parts: individual drones

acExchamge -

S\
|=l stackoverflow EZE=IZN == [ Unanswerea |

answer Here's how it works: ]

Better Jobs.

sentll

arzon 35
the URL in Visual Basic 2010 .l CAREERS 2.0

) o 2 Playing movie files with

Community Question Answering

Whole: question
Parts: individual answers

B GOOGL Price % Change

B AAPL Price % Change ;{ 12,10

B MSFT Price % Change
m NASDAQ Composite Level % Change

Feb 14 Apr4 Jun'14 Aug 14 Oct'14 Dec 14

mm”m Dec 20 2014, 215PM EST. Powered by YCHARTS

Stock Market
Whole: DJIA
Parts: individual stock

Parts of a passenger jet airplane
spoiler/speed brakes rudder segments
a7 fuel tanks {long range}

main fuel tanks .
turbofan engines \\’ EI

business class cabin .
- bulk cargo hold
spoiler/speed brakes
high-speed inner alleron
spoiler/speed brakes
leading-edge flap

crew flight deck and
cantrol cabin

weather radar < ;
scanner main retracting aluminum
landing gear leading edge
low-speed
forward outer aileron
retracting
wheels first class cabin passenger entry turbofan engines angine oil tank

door and stairs

®© 2010 Eneyclopsedia Britannica, Inc

System Reliability
Whole: system
Parts: individual component

Arizona State University



Qutcome of Part-Whole

Q?@" Evaluation
gOUTSTANDING
‘ , Excellent
[1Very Good
- [1 Average
[ Below Average

Whole: Team Whole outcome: Team’s performance
Part: Members Part outcome: each member’s performance

Karen Blakeman ..
RBA Inft S Edit

00000

Whole: Researcher Whole outcome: h-index
Part: Publications Part outcome: #citations of publications

Question: how can we predict the outcome of whole/parts?

iy Arizona State University



Predict the Part-Whole OQutcomes

= Existing Algorithmic Work
= Separate models for parts and whole

= Joint linear models

= Aristotle’s hypothesis: whole>sum(parts)

= Question: how to jointly predict part/who

= by leveraging the part-whole relations
beyond the linear models?

e

Nip

DATA

Lab Arizona State University



Challenges -- Modeling

= Nonlinear Part-whole Relationship

= Max: impact of a question is strongly
cor[elated with that of the best ans%‘\

g "~ 3

" - \‘ﬁ ce

i) (..' | “‘ ="

<L iogh o0 o < 10, ‘ |

<c>? ue\\mp t § IQuel;tioH)lmg;ct“m
o Min:E'gssic Wooden Bucket Theory

= Sparsity: team performance often dominated
by a few top-performing team members

iy Arizona State University



Challenges — Modeling (con’t)

= Part-part Interdependency
= Parts are connected via underlying network

= |mpact of such interdependency on outcomes
Hypothesis-1: similar parts -> similar contribution to whole

Hypothesis-2: similar parts -> similar parts outcome

Question: how can we utilize
1. nonlinear part-whole relationship
2. part-part interdependency



Challenges -- Algorithm

Non-linearity
+ high complexity
Interdependency

Question: how to scale up the computation?

iy Arizona State University



Part-Whole Outcome Prediction

(Parts)

FP

Given: 1. feature matrix for whole/part F° /FP
2. outcome vector for whole/part y° /y?

Predict: outcome of new whole/parts

iy Arizona State University



A Generic Joint Prediction Framework -- PAROLE

" Formulation

min J =

+y(@Qw?) + Qw?))

Movie

Actor/Actress

(Part) FP (@'

(Whole)F°(T;= o .

- __.. —— i ————

J.. parameter regularizer

DATA
Lab

Arizona State University



Agg(o;)
Modeling Part-Whole Relationship - %

= Overview: for each whole entity o;, define
e; = F°(i,:)w® — Agg(o;)

= ¢;: Measure the difference between
» predicted whole outcome using whole feature
» predicted whole outcome using aggregated parts
outcome

= Key idea: model part-whole relations by

= Different loss functions on e¢;

= Different aggregation functions Agg(:)

iy Arizona State University



: A4g9(0;)
Overview a % ”

" |ntuition: whole « (weighted) sum of parts

= Detalls: e; = FO(i, )w° — Agg(o;)
Agglo) = ) alFP(j,:)w?
i. . .y ]Ed)gl) . ,
= a;: weight of part j's contribution to the whole o;'s
outcome

" Remark:

= Characterize part-whole relationships
= Use different loss functions on ¢;

= Use different norms on q;

iy Arizona State University



. _ linear
Linear Part-Whole Relation % 0

= [ntuition: Whole « linear combination of parts

= some parts play more important roles than the
others in contributing to the whole outcome

a No 2
2n, ~i=1 €

" Details: J,, =

" Remark:

= a} = 1: the whole is the sum of its parts

; 1
" aj = oo average coupling
l

iy Arizona State University



Sparse Part-Whole Relation p;%% R\
o

= |ntuition: Whole « a few parts

= some parts have little or no effect on the whole
outcome

= Details: J,, = —Z ( el +1]a;l1)

" Remark:

= The [; norm can shrink some part contributions

i
a; to exactly zero

= Nonlinear part-whole relation

iy Arizona State University



Ordered Sparse Part-Whole Relation

= |ntuition: Whole « a few top parts

= team performance is determined by not only a
few key members, but also the structural
hierarchy between them

= Details: J,, = %Z?;’l@ ef +20.,(a)))

© 0, (x) = X7y lxlgw; = w'|x],: ordered
weighted [; norm

= w € K,,,: vector of non-increasing non-negative
weights

iy Arizona State University



Robust Part-Whole Relation

= |ntuition: Whole « parts that are not outliers
= squared loss Is sensitive to outliers

= Solution: robust regression model

= Details: J,, = iz 2. p(e;)

= p(+) IS robust estimator

IIIIIII

Case le] <t le| > ¢ .
Method - = N
Huber pg(e) %ez tle| — %tz N

p(e)
0 2 3456867
| | I I I N |
|

(e)

1 ‘ 2 -6 -4 -2 0 2 4 6
Bisquare pg(e) | & {1-[1-(%)*]*} £

iy Arizona State University



Maximum Part-Whole Relationmf\x

" |ntuition: Whole « max(parts)

= team performance dominated by the best team
member/leader

= Detalls:

= Agg(o0;) = max(parts outcome) [not differentiable]
= Soft max function: max(xq, x5, ..., X,) =

In(exp(xq) + exp(x,) + -+ + exp(xy,))
= Aggregation: 4gg(oy) = In(Xjep(o, XPFP (- IwP))

Ng
]po = - z eiz
2no =1

iy Arizona State University



Summarize Part-Whole Relations

Agg(o:) Jpo K
Aggregation of parts Sub-objective Remar

2 Nonlinear
MaX|mum In(}; exp(FP(j,: )wP)) 2n, z € Whole « max(parts)
. a , Linear
Linear Za} FP(j,: )wP o zei Whole « linear
? combination of parts
Zaj‘f FP(j,: )wP iz(le_z T Alagl)) Nonlinear
Ne a2 H Whole « a few parts
LED(i - )P a 1 Nonlinear
eIt Z % FP U, Jw —z(— el +0,,(ay) Whole « a few top
Sparse No e "2 Seis
z ol FP(j, )wP 7 Nonlinear
Robust J ' n—z p(e;) Whole « parts that are
0 not outliers
DATA

Lab Arizona State University



Modeling Part-Part Interdependency

= Effect on the whole outcome

= |ntuition: closely connected parts might
nave similar contribution to the whole outcome

= Detalls: i
4
o= |1, 1 N,
Tpo=—> |56 +Maili+5 >, Ghlag —aj) P
0 i—1 k,lEd(0s) 12 Giy

= Similar parts (large G?,

— similar contributions (a,‘; ~ ali)

iy Arizona State University



Modeling Part-Part Interdependency

= Effect on the parts outcome

= Intuition: closely connected parts might share
similar outcomes themselves

o DetaiIS'

np MNp

S S G W~ F G we )
2npi 1j=1 FP(1, )wP
12

4, HywP

14

= Similar parts (large G

— similar predicted outcomes (FP(i,:)wP = FP(j,: )wP)

iy Arizona State University



Optimization Solution

e J'_ Py
= Formulation: A
" J=JowW°) + ,(wP) + +
+ - (w, wP)
= Observation:
j

= not jointly convex w.r.t. w°, wP, a;

= Convex w.r.t. to one block while fixing others

= Solution: block coordinate descent

iy Arizona State University



Block Coordinate Descent

= Three coordinate blocks: w°, w?, a}

= Update one block while fixing others

= Update each block

= (proximal) gradient descent
9Jpo 9/ po a]" or proximal gradient update
ow° owpP .
Maximum Agg a e (FO(0, 1)) LA wi: . ZjEd)(oi)(Fp(]":))'}NIip N/A
"o Mo li=i— Tjegop i
Linear Agg i(FO)’(FOWO _ MFpr) _i(Fp)IMI(FoWo _ MFpr) ei(—Fp(¢(0i), JwP) + in’al-
n, No
Sparse Agg i (Fo)r(Fo °© _ MFPwP) _ i (Fp)IMI(Fo ° _ MFPwP) Z=a;— T[ei(—FP(q,’)(ol-), wP) + in)ai]
Ny No a; < proxpq, (z)
Order Sparse i(FO)I(FO © _ MFPwP) _i (Fp)/M/(Fo °© _ MFPwP) Z=a;— T[ei(—FP(q,’)(ol-), OwP) + in)ai]
Agg Mo o a; < proxazq,,(2)
Robust Agg a "o op(e) a "o dp(e;) . a [0p(es)
— FO(i,:) |— —Z a;FP(j,:)’ FP p +Lp
N, Lwj—q O0e; @) N, Lmij—q1 Oe; ( icdlon G::)) n.| oe a6, (TFP(¢(0), JwP)




Optimization Properties

= Convergence and Optimality

= Under mild conditions, the optimization aiig
converges to a coordinate-wise minimum point

de’{a‘\\s

= Complexity
= The alg scales linearly w.r.t. the size of part-
whole graph in both time and space

-l ARMuw .
Whole % > Complexity: 0(nyd, + nydy, + my, + Myy)
— e e —— no. #whole entities
Parts & 7 L n,: #part entities

4

\ My, #links from whole to parts

a m,,: #links in part-part network
d,, d,: feature dimension of whole, parts

- 120 - DL‘;'LA Arizona State University



Datasets

Math ?;Vejtté‘;;‘ @?/z\t’\éesr) 16,638 32,876
SO ?;Veostteigg‘ (A#Cf)‘t"éir) 1,966,272 4,282,570

DBLP (hA-liJr:EZ:() : #gf‘;’t?;n) 234681 129,756

Movie (L”%e) ACtO(;f’/AﬁCt)reSS 5,043 37,365

= Setup: sort whole in chronological order, gather first

x percent and corresponding parts as training, test on
last 10%

= Metric: root mean squared error (RMSE)

iy Arizona State University



Qutcome Prediction Performance

.........................................................

Overall RMSE

Bl Separate
ol e R Elsum |
= 5 g g [ ILinear
= 25Tl A I = [ IMax
s < O [ [Huber
> il S = [ Bisquare |
% S B | asso
% """" AN A I OWL
2 | | | |
3
o

2 3 4 5
Percentage of Training

Math

asJleds

Observations

1. Joint prediction models >
separate models

2. Non-linear part-whole
relationships (max, Huber,
Bisquare, Lasso, OWL) >
linear relationships (Sum,
Linear)

3. Lasso and OWL are the

best methods in most
cases

iy Arizona State University



Effect of part-part interdependency

0.25 ;
Il PAROLE-Basic
[ |PAROLE-GraphForWhole
5 0.2f Il PAROLE-GraphForWhole&Parts
L0
3
Movie 5 015
= -
N
G
S 0.1}
=
°©
o
C 0.05}
0

Whole Part Overall

= PAROLE-Basic — no network information
= Part-part interdependency on whole outcome and parts
outcome both boost the performance

iy Arizona State University



Convergence Analysis

1

o
w
T

&
o

n
@)

Objective Function Value
= o &

=t
w

JL
10 20 30 40 50 60
Number of lterations

0.2
0

= PAROLE converges fast (25-30 iterations)

iy Arizona State University



Parameter Sensitivity

S TS T A N 0 S N B

Movie

= ¢ controls importance of part-whole relation
= [ controls importance of part-part interdependency
= Stable in a relatively large parameter space

iy Arizona State University



Scalablllty of PAROLE

sl |~ * T Llnear g > | |
— —8— Max — e o - -
o A0 .. a 1 ]
2 —*— Huber R \
E s Bisquare a 2
v 30 Lasso j_ -
SO s o5 |- +OWL |
E
— 20 .
on
| -
£ 15} i
S
10 ]
oC
C - —_H_ T A - —t= — - "T- ! - I
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
. . 4
part-whole graph size:n, + N, +M,, x 10

= PAROLE scales linearly w.r.t. part-whole graph size

iy Arizona State University



Conclusions -- PAROLE

= Goals: leverage potentially non-linear part-
whole relationships for outcome prediction

= Solutions: PAROLE
= Modeling

= Optimization

= Block coordinate descent

= Converges to a coordinate-wise minimum point

= Scales linearly w.r.t. the part-whole graph size

iy Arizona State University



Roadmap

= Motivations and Background

= Part I: Team Performance Characterization

= Part Il: Team Performance Prediction
m)Part [11: Team Performance Optimization

= Open Challenges

" Demo

iy Arizona State University



Part Ill: Team Performance Optimization

= Team Formation and its variants

= Team Member Replacement

" Team Enhancement

iy Arizona State University



Simple Team formation Problem

= |Input:
= Atask T, consisting of a set of skills
= A set of candidate experts each having a subset of skills

T = {algorithms, java, graphics, }

Alice Bob Cynthia David Eleanor
{algorithms} { } {graphics, java} {graphics} {graphics,java, }

= Problem: Given a task and a set of experts, find the
smallest subset (team) of experts that together have all
the required skills for the task

Slides from: http://www.cs.uoi.gr/~tsap/teaching/cs-114/index.html



Set Cover

" The Set Cover problem:
= We have a universe of elements U =
{x1, ..., %N}

= We have a collection of subsets of U, § =
{Sli ...,Sn}, SUCh that UiSi =U

= We want to find the smallest sub-
collection € < S of S, such that Ug ¢ S; = U

= The sets In C cover the elements of U

Slides from: http://www.cs.uoi.gr/~tsap/teaching/cs-114/index.html



Coverage

" The Simple Team Formation Problem is a
just an instance of the Set Cover problem

= Universe U of elements = Set of all skills

= Collection § of subsets = The set of
experts and the subset of skills they

pPOSSESS.
T = {algorithms, java, graphics, }

Alice Bob Cynthia David Eleanor
{algorithms} { } {graphics, java} {graphics} {graphics,java, }

Slides from: http://www.cs.uoi.gr/~tsap/teaching/cs-114/index.html



Team Formation with Networks

= T = {algorithms, software engineering,
distributed systems, web programming}

alg Software

() ©

Software,
H—©  @m
Web Software, dist web

Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. KDD, 2009.




Problem Definition

= Glven:

Task requiring a set of skills

Set of individuals

Skills possessed by each individual

Graph of communication cost between individuals
" Find

= A subset of individuals containing all required skills
with minimized communication cost

Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. KDD, 2009.




Communication cost

= Diameter (CC-R)
= Diameter of the subgraph of the selected
iIndividuals
= NP-complete (reduce to Multiple-Choice
Cover)
= Minimum Spanning Tree (CC-MST)
= Cost of the MST on the subgraph of the
selected individuals

= NP-complete (reduce to Group Seiner Tree)

Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. KDD, 2009.




Algorithm for Diameter-TF

= For every skill a required by the task T,
compute S(a): the individuals with a

= Pick the skill a,,,-.q;With lowest cardinality

= Among all candidates from the set
S(arqrest), PICK the one that leads to the

smallest diameter

Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. KDD, 2009.




The RarestFirst algorithm

T:{algorithms,java,gfaphiCS, }

{graphics, Jjava} {algorithms,graphics}

Skills:

\ algorithms
{algorithms,graphics,java} graphics
()
{ Java} { }
Q.. = algorithms Diameter = 2

Srare :{Bob, Eleanor}

Slides from: http://www.cs.uoi.gr/~tsap/teaching/cs-114/index.html



The RarestFirst algorithm

T={algorithms,java,graphics, }
{graphics, Java} {algorithms,graphics}
@ Skills:
\ algorithms
E ) {algorithms,graphics,javaj} graphics
java
{ Java} { }
d... = algorithms :
rare = 10 Diameter = 1

Srare :{Bob, Eleanor}

Slides from: http://www.cs.uoi.gr/~tsap/teaching/cs-114/index.html



Algorithm for MST-TF

= CoverSteiner
= X, < GreedyCover

= Add individuals with most uncovered
skills

= X' « SteinerTree(G, X,)

: X' «— v, where v is a random node from Aj.
: while (Xo \ X') # 0 do
Uk «— argmin,, . v\ - 4 (u, X")
if Path (v*,X") # () then
X" — X' U{Path(v*,X")}
else

1
NSTw P H

Return Failure State University



Another algorithm for MST-TF

1: H —EnhanceGraph(G,T)
2: Xy «SteinerTree(H,{Y1,...,Yx})
3: X' — Xy \{Y1,..., Y}

EnhanceGraph:
For every skill a; In T
1. Create an additional node Y;

2. Connect Y; to all individuals with a; with large
weight

Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. KDD, 2009.




The EnhancedSteiner algorithm

Put a large weight on the new T={algorithms,java,graphics,
edges (more than the sum of

all edges) to ensure that you b
only pick one for each skill \ graphics
~

{graphics,pythgs,java} I

S « 1algorithms,graphics}

java

S~ ‘ T~ ~ -
// talgorithms,graphics javay | _ algorithms
//
’
S java}l _ 7 d )
~ -
T MST Cost = 1

Slides from: http://www.cs.uoi.gr/~tsap/teaching/cs-114/index.html



Experimental Evaluation

= DBLP: papers in database, data mining, Al,
theory

= Skills derived from common terms in paper titles

= Communication weights determined by co-
authorship

= 5509 individuals, 1792 skills
= Tasks generated with 2 to 20 skills

= Average over 100 combinations

Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. KDD, 2009.




Communication Cost

: R.aresrtirst —-— ' . ' : : ‘ ,.B ' r r r T T ; T T T

reedDiameter ---3-- EnhancedSteiner —@— 0]
- CoverSteiner -
8 ek 1 - reedMST @ Enhanced
O B e @ | o
= S | g
2 T . c
S e ) - .
g | g | I
3 0 E
E =
E | , E .........
O o) :
5 ” f O CoverSteiner
© | p - —
£ RarestFirst 2,
© =
21

# Skills # Skills
(a) Cc-R cost (b) Cc-MsT cost

Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. KDD, 2009.




Cardinality of the team

EnhancedSteiner —I'.—
Rarestirst —l—

e RarestFirst , Enhanced

CoverSteiner

Team Cardinality

GreedyCover (ignores communication)

# Skills
(a) Cardinality of the team.

Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. KDD, 2009.




Connectivity of the team

'C ] 1 T L] ] 1 ] 1 1 i

& i . S S S S T
2 100 L A Sy v
O e ___.__.-u‘.'"

= ’ e

0

5

T 80 .
@

c

c

o

Q

An

= B _
put 60

@

=

o

=

T 40 :
=

w

E

2 o0 | EnhancedSteiner —@— |
S RarestFirst —ll—
b GreedyDiameter ---{=}--
2 GreedyMST ---&--
= CoverSteiner -
= GreedyCover ===+
2 D | L 1 | L 1

2 4 6 8 10 12 14 16 18 20
# of required skills (t)

(b) Number of disconnected teams.

Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. KDD, 2009.




Case study on 10 papers

Rank

Paper title

1

2

10

The anatomy of a large-scale

hypertextual Web search engine

Fast algorithms for mining

association rules

Mining association rules between

sets of items in large databases

Text categorization with support vector machines:
Learning with many relevant features

Conditional random fields: Probabilistic models
for segmenting and labeling sequence data

Mining frequent patterns without

candidate generation

A survey of approaches to automatic

schema matching

Automatic subspace clustering of high dimensional
data for data mining applications

Models and issues in data stream systems
NiagaraCQ: A Scalable Continuous Query

System for Internet Databases e University




Case Study Results

Rank Actual authors RarestFirst result EnhancedSteiner result
1 S. Brin, L. Page Paolo Ferragina, Patrick Val- P. Ferragina ,J. Han, H. V.
duriez, H. V. Jagadish, Alon Jagadish, Kevin Chen-Chuan
Y. Levy, Daniela Florescu Di- Chang, A. Gulli, S. Muthukrish-
vesh Srivastava, S. Muthukrishnan  nan, Laks V. S. Lakshmanan
2 R. Agrawal,|R. Srikant R. Agrawal Philip S. Yu
3 R. Agrawal, T. Imielinski, A. N. Phi]i;; S. Yu Wei Wang, Philip S. Yu
Swami
4 T. Joachims Wei-Ying Ma, Gui-Rong Xue, J. Han, H. Lu, Wei-Ying Ma,
H. Liu, J. Han, H. Lu, Z. Chen, Z. Chen, H. Liu, Gui-Rong
(. Yang, H. Cheng Xue., Q). Yang
5 J. Lafferty, F. Pereira,|A. McCal- | JA. McCallum A. MeCallum
lum
6 J. Han, J. Pei, Y. Yin F. Bonchi A. Gionis, H. Mannila, R.
Motwani
7 E. Rahm JP. A. Bernstein C. Bettini, R. Agrawal, Kevin C. Bettini, |P. A. Bernstein,
Chen-Chuan Chang, T. Imielin- H. Garcia-Molina, S. Jajodia, D.
ski, H. Garcia-Molina, D. Barbara, Maier, D. Barbara
S. Jajodia
8 R. Agrawal, |J. Gehrke}] D. Gunop- p Gunopulos,| R. Agrawal R. Agrawa],ID. Gunopulos
ulos, P. Raghavan
9 B. Babcock, S. Babu, M. Datar, R. M. T. Ozsu H. V. Jagadish, D. Srivastava
Motwani, J. Widom
10 J. Chen,|D. J. DeWitt, F Tian, Y. Donald Kossmann, David J. M. J. Carey, M. J. Franklin, D.

Wang

DeWitt, | Michael J. Franklin,

Michael J. Carey

Kossmann, D. J. DeWitt

Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. KDD, 2009.




Steaming Tasks

= Steam of tasks arriving online

= Create teams on-the-fly for each task
= Teams should be fit for the tasks
= Allocation should be fair to people

Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and Stefano Leonardi. 2010. Power in

unity: forming teams in large-scale community systems. CIKM, 2010.



Balanced Task Covering

min L (1)
Y piX;i>J;,  Vi=1,...,k £=1,...,m (2) Alltasks are executed
j=1
.'!1'
Y Xu<L, Vi=1,..., n (3) Load balancing
i=1
L>0,X; €{0,1} (4)

Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and Stefano Leonardi. 2010. Power in

unity: forming teams in large-scale community systems. CIKM, 2010.



Online TF Iin Social Networks

= Forming teams that can accomplish the
specified tasks while optimizing:

= Load: number of tasks one expert

participates

= Coordination Cost:
= Steiner tree

= Diameter

Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and Stefano Leonardi. Online Team

Formation in Social Networks. WWW, 2012.



Balanced Social Task

min max L(p) Load balancing
i€

(3,«:;}*5.3(.]3'j qj) — 1 Vg € J Alltasks are executed
F(QJ) <D Vj € J  Boundon the

communication cost

Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and Stefano Leonardi. Online Team

Formation in Social Networks. WWW, 2012.



Realistic Team Formation

= Realistic Requirements

= |Inclusion of a designated team leader
and/or a group of experts

= Skill requirement
= Team size, or team cost

= Locality of the team, e.g., In a
geographical sense

Syama Sundar Rangapuram , Thomas Buhler , Matthias Hein, Towards realistic team formation in social networks

based on densest subgraphs. WWW, 2013.



Measure of collaborative compatibility

= Generalized form of subgraph density

assoc(C) Zi,jec Wij
volg(C) Yiec Ji

= Strict monotonicity

= density(C) =

= Robustness

Syama Sundar Rangapuram , Thomas Buhler , Matthias Hein, Towards realistic team formation in social networks

based on densest subgraphs. WWW, 2013.



Problem Formulation

assoc(C')

max

ccv vol,(C)

subjectto: S C C Required inclusion
skill Requirement K5 < volas; (C) <5, V5 € {1,...,p}

C| <b Team size
vol.(C') < B Budget constraint
dist(u,v) < do, VYu,v € C, Team locality

Syama Sundar Rangapuram , Thomas Buhler , Matthias Hein, Towards realistic team formation in social networks

based on densest subgraphs. WWW, 2013.



Churn of A Team Member

= Case 1. Employee resigns In a sales team

= Case 2: Task force down in a SWAT team

= Case 3: Rotation tactic between benches
INn NBA team

Q:

low to find the best alternative when a

team member leaves?

« L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Replacing the Irreplaceable: Fast Algorithms for Team Member

Recommendation, WWW 2015

* N. Cao, Y.-R. Lin, L. Li, H. Tong: g-Miner: Interactive Visual Group Mining on Multivariate Graphs, ACM CHI 2015
«  System prototype & video demo:


http://team-net-work.org

Team Member Replacement

Problem Definition: Adj Matrix
Given: (1) A labelled social network G := {4, L}
(2) A team G(T)

Skill Indi
(3) A team member p € T Il Inaicator

Recommend: A “best” alternative q ¢ T to replace
the person p’s role in the team G(7)

- .

/ “~o

¥ Team Ry

+ .

‘ ‘ » u
S, Q: who is a good candidate to
Y. K B replace the person to leave
e + Leave
-y -

iy Arizona State University



Pair-wised team similarity

1rTgiITEeE ii : -1 ?'E '::‘-t ‘ -'t'
coifipecdde o of Beiitl dife
t (31 13503 L EONTREEE] BT TARN FERE I
S5+ #5504 HEDSRRY HNRL SRS S ++ H8
TR T WYY .
H F :
823 i

ng

Soclal Science Literature

successful struggli

obissbiessd .od

sssssss ful struggling

= Team members prefer to work with people they have
worked before [Hinds+OBHDPOO]

= Distributed teams perform better when members
know each other [Cummings+CSCWO08]

= Specific communication patterns amongst team
members are critical for performance [Cataldo+CHI12]

Conjecture: The similarity should be measured Iin the
context of the team itself

iy Arizona State University



Design Objectives

Objective 1: A good candidate should have a similar skill set

' Team * Skill Matching
|
)}
‘
S
S \
\s L |
LS N To leave Candidate 1
~§
Skill Set: @ ® e e b 4 KT

New team would have a similar skill set as the old team to continue
to complete the task

iy Arizona State University



Design Objectives

Objective 2: A good candidate should have a similar network
structure

Structure Matching

- -
: Team
L}

$

S
. t t
To leave Candidate 1
Ski Il Set: g g g P?P 9 SVgEM MUL%EDIA

New team would have a similar network structure as the old

team to collaborate effectively

iy Arizona State University



Design Objectives

The skill and structure match should be fulfilled

simultaneously!
"4 .‘~~~ @ @
g ream el oS

. ® &
| | ":’0, ' A A @
L\ ‘e, ‘.‘. S ~—

4

$ ’1:‘:'-.--....:':.: /
S 0,’ . \
‘s 0‘-“--“ ‘ @

Skill Set: ® e 2 ? ® e
. DM vis DB NL Al SYSTEM ULTIMEDIA

New team would have similar skill and communication

configuration for each sub-task

L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Replacing the Irreplaceable: Fast Algorithms for Team Member

Recommendation, WWW 2015



Random Walk based Graph Kernel

/®\ -
2 ﬁ & /@
\ .
fex—] 7 |—/A\
Graph 1 Graph 2

Details:
1. Compare similarity of every pair of nodes from each graph
—EQg: (1,2) vs (@, ])— less similar
(1,5) vs (a,e)—> more similar
2. Node pair similarity is measured by random walks
3. Two graphs are similar if they share many similar node pairs

gty Arizona State University



Random Walk based Graph Kernel

,; ~ ~S~ubtask 1 N ~ & Subtask 1
> .~~ . s * 'l
\ - ||_ ‘ =
(3) (4) p
fex—] 7 —/2\

Team 1 Team 2

Remarks:
* Incorporates both attributes and structures similarity
* [deal fit for our two design objectives simultaneously

iy Arizona State University



Kronecker Product Graph w/o Attribute

Graph lllustration Matrix Description
01 1 0 1 0 1
2 . 1 01 0
Al 2 1 A B Al — |1 0 1 A2 -
lo o 110 010 1
2 x ‘A, 1010

11 <1 v’

P AR AR , v ooo0o0n 10 100
P Y o oo oo0o0 1010 b0l
Q‘\ NN zz'Al X A2 A I R R R R I
S P o1 0100000 L0l
Y Ny Y A1 ®A2 — |ro 100000l 01D

H-;,_:,x'----.\(';-;_* ~7 o 1010000010 |
li RN f,ﬂn 3z’ T [l o 1 oo o000 L 0ol oD
T N e M 0101l o101l nonon
W, e v, Kroneckerproduct ||y g y o 1 0 1 000 0o
3 g3 o L0100 10 10000
1010 10100000

One Random Walk on Al
-+ — One Random Walk on A; ® Ay = A,
One Random Walk on Ag

« S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt. Graph Kernels.

Journal of Machine Learning Research, 11:1201-1242, April 2010.



RW Graph Kernel — Formulation

Taking expectations instead of summing

Ker(G1, G2) _ch dx (Lx A )kLXPX
—qX(I_CI?D{AX) lep)(

Attribute Indicator
" Computational cost (A, t? x t?)
® Exact methods: [Vishwanathan+JMLR2010]
" O(t% - Direct computation
" O(t3) - Sylvester equation
" Approx methods: O(t?ré+mr+r%) [Kang+SDM12]

+ U. Kang, Hanghang Tong, Jimeng Sun. Fast Random Walk Graph Kernel. SDM 2012

« S.V.N.Vishwanathan, N. N. Schraudolph, I. Kondor, and K. M. Borgwardt. Graph Kernels. JMLR 2010.



TEAMREP-BASIC

Find a new member g not in the current team that satisfies:

q = arg max Ker(G(T), G(Tp-;))

53ET
o™= .
"Team y 2 One graph kernel
A% - computation for every
S \ possible candidate
~ ~ . P Leave

- Challenge: need to compute many graph kernel
overall complexity: O(nt?)
» Questions:
> Q1: how to reduce the number of graph kernels
> Q2: how to speed up the computation for each graph kernel

L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Replacing the Irreplaceable: Fast Algorithms for Team Member

Recommendation, WWW 2015



Scale-up: Candidate Filtering

Pruning Strategy: Filter out all the candidates w/o any
connections to any of the rest team members.

,— -.~~
‘Team ~~‘ @
~e o Leave

[ @ ® o [ ] [ ]
vis DB NLP Al SYSTEM MULTIMEDIA

 Theorem: The pruning is safe: wont’ miss any potentially
good replacement

* Benefit: The number of graph kernel computations is
reduced to O(size of the neighborhood of T) O( > )

i€T /p
iy Arizona State University



Speedup — Observation

» == Candidate 1

To Jeave
Ker( I, )
Old Team New Team
To iea\’e <+—Candidate 2
Ker( ,
Old Team New Team

Observation:
Many redundancies — the nodes and edges within the
rest team members remain the same

iy Arizona State University



Speedup — Approx Approach

Fixed Fixed

i
i
— | . | |
| — : i s
To leave X +1 | X - g Candidate 1 X + X =
_ : ~
— - | - I
- - Ai=Xi7h : = X - Ay =~ XoYo
IA 0 M
Fixed Unique : =i & Unique
Original Team I New Team

he common part Is the adjacency matrix of
the rest team members

iy Arizona State University



Detalls

Speedup — Approx Approach

Ker( : )

—_— 4 - —eee 4

~ yf(l—CL (lel) (XQYQ))_lL 4

— erx:s rL (X1 ® )‘(/)@Yl ®Ys))Lyz

M = (I = ZYlL(j X1 ® L5 X))

M is of size (’r—l— 2)% x (r + 2)?

Time Complexity: 0( Y di)tr +1°
e Complexity ((i;p i +) () di<n,r <]

Original Complexity: O(nt?) i€T/p

iy Arizona State University



Questions

P r O t O ty p e Sy S -t e m S |: g; :Z:::::::Z:nj;i" + structure?

= Q3: How fast is proposed solution?
= Q4: How is the scalability?

1 data: dblp | - || JiaweiHan Query = views:  Snippet | Relation Topic @ auto | =
8 | reiation + - C Q2
01|02 03 04 05 06 07 08 03 10 [
9
» <
. »
4N
4h
<
3 Jiawei Han (size: 1) 7
DM : 0.85105 Philip 8. Yu (size: 1)
VI8 :0 DM :1 '
DB:0.6766 VIS0
NLP: 0 DB:0.9183
Al:042670 NLP:0
SYSTEM : 0 Al: 018443
MULTIMEDIA : 0.01642 6 SYSTEM : 0.11788
/’) MULTIMEDIA : 0
A
{: S A
(.‘:F 5(2)
'._7_-._-.!:‘ - v
4 ] | ] | | (0T T
LTI | AT T TR IO AR O RIS OO0 o p—
(TR ST I ﬁ
[ | H
™
5 [ ) [ ] [ ) ® o o 6(0) 6(c)
DM VIS DB NLP Al SYSTEM MULTIMEDIA

prototype: http://team-net-work.org

* Nan Cao, Yu-Ru Lin, Liangyue Li, Hanghang Tong.”g-Miner: Interactive Visual Group Mining on Multivariate

Graphs”, ACM CHI 2015.


http://team-net-work.org

User Studies

0.7 “Graph Only
“ Skill Only
Our method

0.6
0.5
0.4
0.3
0.2

0.1

0 - e —
Average Recall Average Precision Average R@1

Our method achieves the best average recall,
precision and R@1

L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Replacing the Irreplaceable: Fast Algorithms for Team Member

Recommendation, WWW 2015



Application in Author Alias Prediction

O
o0

N
o

o

Average Accuracy
™

o
i

proposed
Q&

b
SN i
1l :L."l Lt
L e '-“l::”:” - alternatlve
£ %
= - ways to
_ HHHHH T combine
,T_ 1:H‘h:ﬂ:h\sd‘hsd‘h\‘:ﬂ‘h\‘:ﬁsd:n‘nshxh$‘hs SR '-'.‘.-'.'.-’..'-'.'.-’..'-'.'.1'.::'.1'.::t:t.ﬁ:-;:::-.::-.::_‘_: :::,[ Ski||+graph
““ ’m“‘
mmuﬁpummuﬂm e OUrS
P ataiad =H = Graph Only
m,*"’"“‘" = A - sKill Only
—&— Linear Combination
'® e Multiplicative Combination
=+ Sequential Filtering

20

40 60 80 100

Budget k

Our method achieves the highest accuracy

Author Alias: Alexander J. Smola vs. Alex J. Smola
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Speed-up by Pruning

Questions
= Q1: How effective is skill + structure?

|= Q2: How fast is pruning?

= Q3: How fast is proposed solution?

= Q4: How is the scalability?

100000 - i
“without pruning
—_
@ “with pruning
©
¢ 10000
n
[@)) 12x
o fast
= 1000 - aster
©
-
8 100
Q
0p)
c
= i 1,709x
) 10 faster
=
|_
1 -

DBLP Movie

Pruning has dramatic speed improvement

NBA

DATA
Lab

Arizona State University



Questions

= Q1: How effective is skill + structure?
Further Speed-up = Q2: How fast is pruning?

= Q3: How fast is proposed solution?

= Q4: How is the scalability?

£ X 10* | | | | 0.5 10*
—e— TEAMREP-BASIC after pruning - . —e— Ark-L after pruning
'g 4l —®— TEAMREP-FAST-EXACT g 0.4 | —=— TEAMREP-FAST-APPROX
o o
8 30 [ O 0.3+
0 I D
c 2 ;faster < o2
: O
)
e 1 £ 0.1
T 80 100 0 100 200 300 400 500
Team Size Team Size
Exact methods Approximate methods

Exploiting redundancy leads to additional speed-up!
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Time in Second

Scalability

2000r

1500+

10001

5001

—©— Team Size=50
- B-Team Size=40
% Team Size=30
=% Team Size=20
—b— Team Size=10

P« e
/3’

—"U’
_ -8 X
‘x‘\\ ”\x\‘ —

FUTEEER
e
1.5 2 2.5 3
# of edges x 10°

TEAMREP-FAST-EXACT

Time in Second

70

60"
50t
40t
30t
20t

101

Questions

= Q1: How effective is skill + structure?
= Q2: How fast is pruning?

= Q3: How fast is proposed solution?

= Q4: How is the scalability?

—©— Team Size=100
- 8- Team Size=80

"% Team Size=60
-# Team Size=40
—D— Team Size=20

1.5
# of edges

x 10°

TEAMREP-FAST-APPROX

Our fast solutions scale sub-linearly
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Team Member Replacement - Summary

" Problem Def: Team Member Replacement
= Design Objectives: skill + structural matching
= Solutions: graph kernel and fast algorithms

= Prototype Systems: http://team-net-work.org/

« L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Replacing the Irreplaceable: Fast Algorithms for Team Member

Recommendation, WWW 2015
* N. Cao, Y.-R. Lin, L. Li, H. Tong: g-Miner: Interactive Visual Group Mining on Multivariate Graphs, ACM CHI 2015


http://team-net-work.org/

Beyond Team Member Replacement

= Team Shrinkage

= |f we need to reduce the size of an existing team (e.g., for the
purpose of cost reduction), who shall leave the team?

= Team Expansion

= |f the team leader perceives the need to enhance certain
expertise of the entire team, who shall we bring into the team?

= Team Conflict Resolution

= |f the team leader sees a conflict between certain team members,
how shall we resolve it?

Key Idea: Solve all these team enhancement scenarios by team
member replacement !

L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Enhancing Team Composition in Professional

Networks: Problem Definitions and Fast Solutions, TKDE, 2016



Team Expansion

Virtual node AN Y

L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Enhancing Team Composition in Professional

Networks: Problem Definitions and Fast Solutions, TKDE, 2016



Team Expansion — Case Study

= Expand the organizing committee of KDD
2013 by hiring some
= strong expertise in Al

= collaborated with as many existing committee
members as possible

= Top five candidate:

= Qlang Yang, Zoubin Ghahramani, Eric Horvits,
Thomas Dietteirich, Raymond J. Mooney

L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Enhancing Team Composition in Professional

Networks: Problem Definitions and Fast Solutions, TKDE, 2016



Team Shrinkage

= Select teams with over 10 members and
manually inject a "noisy” individual
= Connect to all team members w/ random
weights
= Random skill vector

= “best’ candidate to leave the team

L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Enhancing Team Composition in Professional

Networks: Problem Definitions and Fast Solutions, TKDE, 2016



Team Shrinkage -- Results

0.16 = Graph onty
014 | W SKILOnly
Our method
012
0.1
0.08
0.06
0.04
D —
Precision@ 1 Recall@1 F@@

L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Enhancing Team Composition in Professional

Networks: Problem Definitions and Fast Solutions, TKDE, 2016



Team Conflict Resolution

= E.g9., Bob has a conflict with Alice
= Replace either

= Remove either

Bob

Carol .
DATA

Lab Arizona State University



Roadmap

= Motivations and Background
= Part I: Team Performance Characterization
= Part Il: Team Performance Prediction

= Part lll: Team Performance Optimization
=) Part [V: Open Challenges

= Demo

iy Arizona State University



Open Challenges

= Prediction Explanation
= Optimization Explanation
= Multiple Teams Optimization

iy Arizona State University



Prediction Explanation

" Observations:

= Predictive models are mostly black-box or too
complicated to understand reasons behind

= |nterpretable models cannot achieve
satisfactory prediction accuracy

= Goal:
= Provide explanations to performance prediction

= Assess trust of models

iy Arizona State University



What an explanation looks like

atheism

From:- RiChardS Christianity
Subject: Christianity i the answer | 04s

NTTP--: X.X.com —,  Appearin 21% of training

__———» examples, almost always in

atheism
| think \Christianity is the one true religion. — , Appears in 11% of training
If you'd like to know more, send me a note answer examples, always in atheism
Why did this
happen?
How do | fix

it?

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any
Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




Three must-haves for a good
explanation

Interpretable e Humans can easily interpret reasoning

4 . is sex male?

is age > 9.57
; \ 073 36%
@ is sibsp > 2.57
0.17 61%
0.05 2% 0.89 2%

Definitely Potentially
not interpretable interpretable

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any

Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




Three must-haves for a good
explanation

Interpretable e Humans can easily interpret reasoning

e Describes how this model actually behaves

Y} W Learned
® © 9 model
/
(“]
2 N Not faithful
2 % ’ to model
X

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any

Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




Three must-haves for a good
explanation

Interpretable e Humans can easily interpret reasoning

e Describes how this model actually behaves

\V[[o)o S R=Tedglel e » Can be used for any ML model

Can explain
this mess ©

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any

Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




LIME — Key ldeas

Pick a model class
Interpretable by humans

Not globally faithful... ®

Locally approximate global
(blackbox) model

Simple model globally bad, +‘\
but locally good

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any

Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




Using LIME to explain a complex model’s prediction
for input x;

1. Sample points around x;

2. Use complex model to predict
labels for each sample ..

R

3. Weigh samples according ++ :
to distance to x; + ®

_ 4=
4. Learn new simple model O o

on weighted samples

5. Use simple model to explain O

e

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any

Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




Interpretable representations

X (embeddings) X' (words)
..... This is a horrible
/ _@-

\: .

This is what we perturb, and this is what we use
In the interpretable approximation

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any

Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




Interpretable representation:
Images

X (3 color channels / X' (contiguous superpixels)

TRy TN
i!. "\%}

" 2

eS8
ls)é‘gél
&

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any

Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.



Explaining Google’s Inception NN

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any
Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




Fixing bad classifiers

20 newsgroups - Train

i\@“
= > train Jors
7 / ed/c

REPEAT

Evaluate

20 newsgroups test

Explain

Hidden religion dataset

Turkers don’t know
about this dataset

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any
Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




Fixing bad classifiers

= Turkers click on 'useless' words for the
task In each round

Examplc of True Class: . Atheism m m

‘Words that the algorithm considers Document
Important. o From: johnchad@triton.unm.edu (jchadwic)
Bar length indicates Subject: Another request for Darwin Fish
Hest importance, and color || Qrganization: University of New Mexico, Albuquerque
Posti indicates to which Lines: 11
osting topic: Christianity NNTP-Posting-Host: triton.unm.edu
NNTP (green) or Atheism
(Pink). Hello Gang,
to
New| There have been some notes recently asking where to obtain the
DARWIN fish.
Thanks This is the same question I have and [ have not seen an answer on
the

anyone| i
¥ net. If anyone has a contact please post on the net or email me.

email
Thanks,
not|
john chadwick

johnchad @triton.unm.edu
or

has

Please click on the words (right next to the bars) that you think
the algorithm is using incorrectly, because they are not important
to distinguish between Atheism and Christianity. They should be
red and crossed off after you click them.

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any

Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




Fixing bad classifiers

5 0. Train on 20 newsgroups
n turkers clean data
S 0.75
©
E 0.7 Train on hand-cleaned
c 20 newsgroups
o 0.65
)
© 0.6
o 0.55
<
0.5

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. "Why Should | Trust You?": Explaining the Predictions of Any

Classifier. KDD, 2016.
Slides credit: Marco Tulio Ribeiro.




Explain through examples

= Consider the following learning task
Training points: z{.....,2,
Loss: L(z;,0)
Params: ) £ argmingeo 1 Y7, L(z,0)

= Upweighting a training example

do...
Iup,params (Z) 2 dEﬁ

Koh PW and Liang Percy Liang. Understanding black-box predictions via influence functions. ICML, 2017.




Explain through examples

= Effect on the loss of a test example

dL( ze 0
Iup,loss(zaztest) = ( = G,Z)

de e=0
— —VQL(ZteSta é)THé—lv9L(z7 é)

Koh PW and Liang Percy Liang. Understanding black-box predictions via influence functions. ICML, 2017.




Understanding Model Behavior

0) .Emf\
(@)] o o<
© 5 @8
= =& a
S = O
» 2 D0
) o O C
|— I-cv
3e-2
:E c
> 3
YL
mn N
ml
-3e-2
5e-4
CC
O %
- O
@ 50
(@)
e T

200 400 600
Euclidean distance

Koh PW and Liang Percy Liang. Understanding black-box predictions via influence functions. ICML, 2017.




Fixing Mislabeled Examples

0.98 1.0

0.96 3 08
> &
= "

S 0.94 === (Clean data| 2 0.6
9 —+— Influence -
@ —}— Loss <

i | - 0.4
$ 0.92 —}— Random o
- ]
©

= 0.2
0.90 LL

0.0

0.00 005 0.10 0.15 020 025 0.30 0.00 0.05 010 0.15 020 025 0.30
Fraction of train data checked Fraction of train data checked

Koh PW and Liang Percy Liang. Understanding black-box predictions via influence functions. ICML, 2017.




Optimization Explanation

= Observation: existing work focus on
recommending candidates for optimization

= Goal: provide explanations for team
optimization algorithms

= Convince the manager to make appropriate
decisions
= Example explanations for replacement

= The candidate also participates in the key subtasks
that the person leaving is involved In

iy Arizona State University



Multiple Teams Optimization

= How to optimally shrink one team while
expanding another team?

= How to recruit a new player from several
other teams?

= Enhance all teams within an organization
and/or form new teams by collectively
Imposing a series of team enhancement
operations

iy Arizona State University



Data

AMiner: https://aminer.org/data

Semantic Scholar:

http://labs.semanticscholar.org/corpus/

MovielLens:

https://grouplens.org/datasets/movielens/

NBA: https://www.basketball-reference.com

Github: https://www.githubarchive.org/

DATA
Lab

Arizona State University


https://aminer.org/data
https://www.basketball-reference.com/

Resources

= Project Website: http://team-net-work.org/
for papers, code, slides

= Prototype System: http://team-net-
work.org/system.html

iy Arizona State University


http://team-net-work.org/
http://team-net-work.org/system.html
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