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Collaboration Teams in Network

People collaborate as a team to collectively perform
some complex tasks
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Teams Are Everywhere

1. Film Crew 2. Sports Team

LA Lakers

3. Research Team

Kuansan Wang

Stephen Vogel
David Yarowsky

S
b ChengXiang Zhai
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Research Questions

= What do high-performing teams share
in common? [Uzzi+Science13]

= What drives long-term scientific
impact?[Wang+Science13]

= What’s the optimal design for a team in
the context of network?[Lappas+KDDO09,
Anagnostopoulos+WWW10]
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Churn of A Team Member

Case 1: Employee resigns in a sales
team

Case 2: Task force down in a SWAT team

Case 3: Rotation tactic between benches
In NBA team

Q: How to find the best alternative when
a team member leaves? [This paper!]
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Team Member Replacement

Problem Definition: Adj. Matrix
Given: (1) A labelled social network G := {4, L
(2) Ateam G(7)

(3) A team member P € T Skill Indicator

Recommend: A “best” alternative ¢ ¢ T to replace
the person p’s role in the team G(7)
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Social Studies

= Team members prefer to work with people they
have worked before [Hinds+OBHDPQ0O]

s Distributed teams perform better when members
know each other [Cummings+CSCWO08]

= Specific communication patterns amongst team
members are critical for performance [Cataldo
+CHI12]

Conjecture: The similarity should be measured in the
context of the team itself
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Design Objectives

Objective 1: A good candidate should have a similar skill
set

SO S

) Team

Skill Matching

To leave Candidate 1
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Design Objectives

Objective 2: A good candidate should have a similar
network structure

Structure Matching

@ /%

To leave Candidate 1
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Design Objectives

The two objectives should be fulfilled
simultaneously!

Skill Set: @ e e 2 : ol e
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Random Walk based Graph Kernel

Graph 1 Graph 2

Details:
1. Compare similarity of every pair of nodes from each graph
—Eg: (1,2)vs (a,]) — less similar

(1,5) vs (a,e) — more similar
2. Node pair similarity is measured by random walks
3. Two graphs are similar if they share many similar node pairs
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Random Walk based Graph Kernel

Subtask2 ,®*, .
s 1 "~ Subtask 1
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Remarks:
* Incorporates both attributes and structures similarity
* [deal fit for our two design objectives simultaneously
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Kronecker Product Graph w/o Attribute

Graph lllustration Matrix Description
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One Random Walk on Al

- — One Random Walkon A; ® Ay = A
One Random Walk on A2

S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt. Graph
&l Kernels. Journal of Machine Learning Research, 11:1201-1242, April 2010.



RWR Graph Kernel — Formulation

Taking expectations instead of summing

Ker(Gl,Gg) — Z qulx (LxAx)kapx
— q’x (I — C%xAx)_lepx

Attribute Indicator

Computational challenge:

o A is of size n? x n?
e Computational cost
» Exact methods: O(n°) (Direct computation)
or 0(n?)(Sylvester equation)
» Approx methods: O(n*r* + mr + r°) (Kang+SDM12)

- U. Kang, Hanghang Tong, Jimeng Sun. Fast Random Walk Graph Kernel. SDM 2012

- S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt. Graph
14 Kernels. Journal of Machine Learning Research, 11:1201-1242, April 2010.



TEAMREP-BASIC

Find a new member g not in the current team that satisfies:

g = arg max Kel‘(G(T), G(%—m’))

33T
e™ =y o
B ream . One graph kernel
‘. > computation for every
.. possible candidate
% - Leave
o g (

e Challenge: need to compute many graph kernel
overall complexity: O(nt?)
* Questions:
» Q1: how to reduce the number of graph kernels
» Q2: how to speed up the computation for each graph kernel
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Roadmap

= Motivations

= Proposed Solutions

= Experimental Results
= Conclusion

§ DATA
Lab
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Scale-up: Candidate Filtering

Pruning Strategy: Filter out all the candidates who do not
have any connections to any of the rest team members.
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 Theorem: The pruning is safe: wont’ miss any potentially
good replacement

« Benefit: The number of graph kernel computations is
reduced to %2, "

: DLI:,LA Arizona State University



Speedup — Observation

W, €4— Candidate 1
To leave

Ker( v )

Old Team New Team

To leave <— Candidate 2

Ker( v, )

Old Team New Team

Observation:
Many redundancies — the nodes and edges within the
rest team members remain the same
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Speedup — Approx Approach

Fixed

i
0
= + : — +
? i
0
To leave x |+ X —_ g Candidate 1 X | X 1
R~ ; ~
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- _J Al ~ X1 i = X — AQ ~ X9Y5
lﬁ : *
. | .
Fixed o Unique ; Eix o Unique
Original Team i New Team

The common part is the adjacency matrix of the rest team
members

19 : DL’:;LA Arizona State University



Speedup — Approx Approach Details
KGI‘( ) )

~ (1 —cLx(X1Y7) ® (X2Y3)) 'Lz

=y Lyx cyL X1®)‘(/)@Y1®YQ Lyx
M = ( —cZYlL(JX ® YoLY) X5))

71=1

M is of size (r +2)% x (r + 2)°

Time Complexity: O(( > di)(1t*r +7°))

€T /p [ Z d; < n,r <t
Original Complexity: O(nt?) i€T/p
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Roadmap

= Motivations

= Proposed Solutions

= Experimental Results
= Conclusion

§ DATA
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Datasets

= DBLP: For a given paper, treat co-authors as a team, use
conferences as skills (e.g., WWW, KDD, etc)

= Movie: For a given movie, treat actors/actresses as a team,
use movie genres as skills (e.g.,action, comedy, etc)

= NBA: team of a season, use position as skill (guard,

forward, center)

Data i m # of teams
DBLP || 916,978 | 3,063,244 | 1,572,278
Mowie || 95,321 | 3,661,679 | 10,197
NBA || 3,924 | 126,994 1,398
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Questions

= Q1: How effective is skill + structure?
= Q2: How fast is pruning?

= Q3: How fast is proposed solution?

= Q4: How is the scalability?

I Da"g\ Arizona State University
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A Case Study on DBLP

Questions

[ Q1: How effective is skill + structure?

= Q2: How fast is pruning?
= Q3: How fast is proposed solution?
= Q4: How is the scalability?

1 data: dblp <~ @ Jiawei Han Query views: Snippet @ Relation Topic auto | o)
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prototype: http://team-net-work.org
DATA . . .
24 Lab Arizona State University


http://team-net-work.org

User Studies

= Perform a user study with 20 people aged
from 22-35

= Choose 10 papers from various fields,
replace one author of each paper, run
comparison methods and each
recommends top five candidates

= Mix the outputs and ask users to (a) mark
one best replacement (b) mark all good
replacements

25 J==DAIA Arizona State University
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User Studies

0.7 “Graph Only
“ SKill Only

Our method
0.5 —

0.6

0.4 —

0.3 |

0.2 - —

Nl

Average Recall Average Precision Average R@1

Our method achieves the best average recall,
precision and R@1
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Author Alias Prediction

= Author Alias, e.g., Alexander J. Smola vs.
Alex J. Smola

= For such an author, run the team
replacement algorithms on papers s/he
was involved

= If the other alias appears in the top-k list,
treat it as hit
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Author Alias Prediction
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Speed-up by Pruning

Questions
= Q1: How effective is skill + structure?

[= Q2: How fast is pruning?

= Q3: How fast is proposed solution?

= Q4: How is the scalability?
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Pruning has dramatic speed improvement

NBA
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Questions

= Q1: How effective is skill + structure?
Further Speed-up = Q2: How fast is pruning?

= Q3: How fast is proposed solution?

= Q4: How is the scalability?

4 4
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Questions
Scalabilit o
y = Q2: How fast is pruning?

= Q3: How fast is proposed solution?

= Q4: How is the scalability?
2000 w w 70
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Our fast solutions scale sub-linearly
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Roadmap

= Motivations

= Proposed Solutions

= Experimental Results

s Conclusions

s DATA
Lab
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Conclusions
= Problem Def: Team Member Replacement

= Design Objectives: skill matching &
structural matching

= Solutions: graph kernel and fast algorithms

s Systems: http://team-net-work.org/
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