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Foresee the Pathway to Impact
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Implications of forecasting the pathway to impact
• Tracking research frontier

• Invoking early intervention

Question: how to foresee the impact pathway at the 

early stage?
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Modeling Scientific Impact

 Effective scholarly feature design 

[Yan+CIKM11]

 Mechanistic model for the citation 

dynamics of individual papers 

[Wang+Science13]

 iBall- Joint Predictive Model for long-

term impact prediction [Li+KDD15]
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All for Point Prediction
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 C1: Output Space -- Correlation

– Possible solution: multi-label/task learning

– Challenge: correlation unknown

 C2: Parameter Space -- Smoothness

– Possible solution: linear dynamic system

– Challenge: transition process unknown

Challenges
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Given

Predict

Driving factors
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Design Objectives

 D1: Prediction Consistency (for C1)

– Exploit the correlation in output space

– Infer the impact relation structure 

 D2: Parameter Smoothness (for C2)

– Apply linear transition to adjacent parameters

– Learn the linear transition process
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Roadmap

 Motivations

 Proposed Solutions: iPath

 Experimental Results

 Conclusions
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 Optimization Formulations

 Remarks

– Prediction Consistency: similar impacts have similar models

– Parameter Smoothness: model parameters at adjacent time 

steps have linear transformation

iPath -- Formulations
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Empirical loss

Parameter Smoothness

Regularizations

Prediction Consistency
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iPath – linear formulation

 Details:

 Intuition:

Similar impacts (large )

Similar Predictions (small )
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iPath – non-linear formulation

 Details:

 Intuition:

Similar Impacts (large )

Similar Predictions (small  )
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Optimize 
for W

Optimize 
for B

Optimize 
for A

iPath – Optimization Solutions

 Alternating Optimization Strategy
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Impact prob cond. on 

parameter

Transition prob

MRF of impacts

Joint dist.

Probabilistic Interpretation
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Roadmap

 Motivations

 Proposed Solutions: iPath

 Experimental Results

 Conclusions
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Experiment Setup

 Datasets: AMiner (2,243,976 papers, 

1,274,360 authors, 8,882 venues)

 Task: Observing the first 5 years’ citations, 

predict yearly citations from year 6 – 15

 Evaluation Metric: Root Mean Squared 

Error (RMSE)
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Paper Impact Pathway Prediction
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Obs: iPath-ker performs the best among all the 

competitors 

iPath-ker
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Author Impact Pathway Prediction
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Obs: iPath-ker performs the best among all the 

competitors 

iPath-ker
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Sensitivity Analysis

- 19 -

RMSE vs. ⍺ RMSE vs. β

Obs: iPath is stable in a large range of parameter 

spaces
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Performance Gain Analysis
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Obs: relation, transition and inferring are all beneficial 

in improving the prediction

Basic form relation

transition

inferring
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Robustness to Noise in 𝑨𝟎

- 21 -

Obs: iPath degenerates gradually with the noise level
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Roadmap

 Motivations

 Proposed Solutions: iPath

 Experimental Results

 Conclusions
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Conclusions

 Goals: predict the pathway to impact

 Solutions: iPath prediction model

– Design objectives:

• Prediction Consistency

• Parameter Smoothness

– Results:

• Lower error than competitors

• Robust to noise in impact relations
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