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Graphs are Everywhere
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Application 1: Web Mining

Data Mining |¢oSprefLabel

Topic110

Person100
/

foaf:knows

foaf:topic_interest foaf:gender

Person200

Q: How similar are the two graphs?
A: Graph Kernel

1. For each entity, construct a neighborhood graph by breadth-first search up
to depth k

foaf:topic_interest

foaf:name

Liangyue |« Person200 Male

2. Apply graph kernel in kernel based learning methods

Losch, Uta, Stephan Bloehdorn, and Achim Rettinger. "Graph kernels for RDF data."” The Semantic Web: Research

and Applications. Springer Berlin Heidelberg, 2012.



Application 2: Computer Vision

Q: How similar are the two graphs?
A: Graph Kernel

1. For each image, represent it as a segmentation graph

2. Apply graph kernel in kernel based learning methods

Harchaoui, Zaid, and Francis Bach. "Image classification with segmentation graph kernels."

CVPR 2007.



Application 3: Neuroscience
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Q: How similar are the two graphs?
A: Graph Kernel

1. For each brain image, represent it as a graph

2. Apply graph kernel in kernel based learning methods

S8 L. Shi, H. Tong, X. Mu: BrainQuest: Perception-Guided Visual Brain Comparison, 2015.



Random Walk based Graph Kernel

Graph 1 Graph 2

Intuitions:
1. Compare similarity of every pair of nodes from each graph
—EQg: (1,2)vs (a,]) — less similar
(1,5) vs (a,e) — more similar
2. Node pair similarity is measured by random walks
3. Two graphs are similar if they share many similar node pairs
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Kronecker Product Graph

Graph lllustration Matrix Description
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One Random Walk on Al

- — One Random Walkon A; ® Ay = A
One Random Walk on A2

S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt. Graph
[l Kernels. Journal of Machine Learning Research, 11:1201-1242, April 2010.



RWR Graph Kernel — Formulation

Taking expectations instead of summing

Ker(G1,G2) =3, "¢\ ALpx
= ¢ (I —cAyx) 'px

Computational challenge:

o A is of sizen? x n?

e O(n°) (Direct computation) or o(»*) (Sylvester equation)

S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt. Graph
8 Kernels. Journal of Machine Learning Research, 11:1201-1242, April 2010.



Speed up — ARK

Idea: perform low-rank approx on both graphs

Step 1:
Top-r low-rank approx: U2 A2V2

Step 2:
Matrix-inverse Lemma:

~

Ker(Gi,G2) =~ (q1p1)(qsp2) + C(QQUW(VQM ® V3p2)

A= (A @A) — (V] @ Vi)(Uy 8 Uy)) !

« Matrix of size % x r? , easy to inverse
 Overall complexity: O(n?r* + mr + %)

Ll U. Kang, Hanghang Tong, Jimeng Sun. Fast Random Walk Graph Kernel. SDM 2012




Challenges

= ARK: Good for static graphs

= What if graphs are evolving over time
Static

Higher CCI Lower CCI

Dynamic

Higher CCI % Lower CCI %

Q: How to track graph kernel efficiently?
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Roadmap

= Motivation

= | Cheetah-D for Directed Graphs

= Experimental Results

= Conclusion
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Cheetah-D: graph kernel tracking

U
AA\ Az

Ideas:
Avoid: re-computing low-rank approx [ARK]
Goal: track low-rank structure efficiently [Cheetah-D]

(SVD in this paper)
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Step 0: Low rank approx on A4

— A =
->Intuition:AO — ~ o <o x A A ls (m=5,r=2)
|y T
Ui u9 %
AA = x - & (m' =2, =1)
- Y
| -
=Details: Ay ~ UOAOVO’ A =A0+Af§\ 0
AA=XYZ S [

=Property:, SVD on Ay takes: O(mr + nr)
» SVD on AAtakes: O(m/r' +nr') < O(mr + nr)

(m’ < m,r" < 7]
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Step 1: Partial QR Decomposition

=|ntuition: Case 1: 1 € span(uy, us)

” X
22 )‘
UTU2r1 = U1U2 X
S

uj
Ao 0 ,
=Details: |[Uy X| = UpS A =[Uo X] [0 Y] Vo Z]
= UpS [/BO 3] T'Vy

=Property: * Efficiency: takes O (nr'?) [’ < 1]
« Effectiveness: No extra error
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Step 1: Partial QR Decomposition

=|ntuition: Case 2: *1 §é Span(“1,u2)

Uiu2x1 —

Uiuz q X

=Details: [Uo X]| = [Uy ¢q|S A =l X]{ ] Z)

Similar Partial
QR decomp on Z

=Property: . Efficiency: takes O(nr'?) [r' < r]
- Effectiveness: No extra error
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Step 2: Full SVD on a Small Matrix

= |ntuition: _ - )
(r 1) x (r+1) S - T
N BN
L A: R
=Details: vool / A =
M:S[O v| T/ =LAR" |4 :[UOAQ}S{O Y]T'WOAZJ'
= [Uy AQILAR'T'[Vy AZ)'

=Property: . Efficiency: takesO((r + r')%) [r’ < 7]
« Effectiveness: No extra error
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Step 3: Rotate Orthonormal Basis

= |ntuition:
Rotate 1427 py
L
Rotate viv9 2z by .
R
=Details: [J = [Uy AQ]|L
V =[Vo AZ|R

=Property: , Complexity: O(nr?)
e Overall SVD Update Complexity: O(nr* +m/r' + nr'?)
Re-compute SVD: O(nr* + mr)
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Analysis and Variants

= Time complexity of Cheetah-D: O(nr* + nr' + 1°)
ARK: O(n?r® + mr 4+ r°)

= Comparison Example (n = 3328, = 500, 7" = 5)
e ARK:7.5s

Cheetah-D Algorithm Sketch

e Ours:0.4s t = 1, Initialize SVD of A1 and A2
= \Variants for t=2.3....

Update SVD for A1 Olrl 1))
e Undirected graphs| Update SVD for A2 ¢t )
Update Ker(A1,A2) « O(nr® +1°)

o Attributed graphs |e"d
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Roadmap

= Motivation

= Cheetah-D for Directed Graphs

=| Experimental Results

= Conclusion
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Case Study — MTA Bus Traffic

= Graph construction

e Monitor traffic volume of 30 bus stops on 3 routes,
from Monday, 03/24/2014 — Sunday, 03/30/2014

e Represent each stop as a time series where each
timestamp is traffic volume within each hour

e On each day, build a graph for the 30 stops using
Granger causality test

= Graph kernel computation

e Graph kernel is computed between two graphs of two
consecutive days
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Case Study — MTA Bus Traffic
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Relative Error
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Avg Error vs. Rank
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Running Time vs. Rank
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Scalability
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Quality vs. Speed
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Roadmap
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= Cheetah-D for Directed Graphs
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Conclusion
= Goal: track graph kernel of dynamic graphs
= Our Solution: Cheetah-D

e Key idea: track low-rank approx
e Results:
% Complexity: O(nr? + nr'? + r°)
% In practice: ~15x faster, Err<0.05%
e More in paper:
% Cheetah-U for undirected graphs

% Error bound analysis
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