Cheetah: Fast Graph Kernel Tracking on Dynamic Graphs

Presenter: Liangyue Li

Joint work with

Hanghang Tong (ASU), Yanghua Xiao (Fudan), Wei Fan (Baidu)

Arizona State University

Graphs are Everywhere

Collaboration Networks

Patient Networks

Hospital Networks

Arizona State University

Application 1: Web Mining

Q: How similar are the two graphs? A: Graph Kernel

- 1. For each entity, construct a neighborhood graph by breadth-first search up to depth k
- 2. Apply graph kernel in kernel based learning methods

3

Lösch, Uta, Stephan Bloehdorn, and Achim Rettinger. "Graph kernels for RDF data." The Semantic Web: Research and Applications. Springer Berlin Heidelberg, 2012.

Application 2: Computer Vision

Q: How similar are the two graphs? A: Graph Kernel 1. For each image, represent it as a segmentation graph

2. Apply graph kernef in kernel based learning methods

Harchaoui, Zaïd, and Francis Bach. "Image classification with segmentation graph kernels." CVPR 2007.

Application 3: Neuroscience

Q: How similar are the two graphs? A: Graph Kernel

- 1. For each brain image, represent it as a graph
- 2. Apply graph kernel in kernel based learning methods

Random Walk based Graph Kernel

Graph 1

Graph 2

Intuitions:

- 1. Compare similarity of every pair of nodes from each graph
- Eg: (1,2) vs (a, j) \rightarrow less similar
 - (1,5) vs (a,e) \rightarrow more similar
- 2. Node pair similarity is measured by random walks
- 3. Two graphs are similar if they share many similar node pairs

Kronecker Product Graph

One Random Walk on A_1 + \$= One Random Walk on $A_1 \otimes A_2 = A_\times$$ One Random Walk on A_2

S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt. Graph Kernels. Journal of Machine Learning Research, 11:1201–1242, April 2010.

RWR Graph Kernel — Formulation

Taking expectations instead of summing

$$\operatorname{Ker}(G_1, G_2) = \sum_k c^k q'_{\times} A^k_{\times} p_{\times} = q'_{\times} (I - cA_{\times})^{-1} p_{\times}$$

Computational challenge:

• A_{\times} is of size $n^2 \times n^2$

8

• $O(n^6)$ (Direct computation) or $O(n^3)$ (Sylvester equation)

Time > 1h, n=3328

S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt. Graph Kernels. Journal of Machine Learning Research, 11:1201–1242, April 2010.

Speed up — ARK

Idea: perform low-rank approx on both graphs

Step 2: Matrix-inverse Lemma:

 $\operatorname{Ker}(\mathbf{G}_1, \mathbf{G}_2) \approx (\mathbf{q}_1' \mathbf{p}_1)(\mathbf{q}_2' \mathbf{p}_2) + c(\mathbf{q}_1' \mathbf{U}_1 \otimes \mathbf{q}_2' \mathbf{U}_2) \tilde{\Lambda}(\mathbf{V}_1' \mathbf{p}_1 \otimes \mathbf{V}_2' \mathbf{p}_2)$

$$= ((\Lambda_1 \otimes \Lambda_2)^{-1} - c(\mathbf{V}'_1 \otimes \mathbf{V}'_2)(\mathbf{U}_1 \otimes \mathbf{U}_2))^{-1}$$

- Matrix of size $r^2 \times r^2$, easy to inverse
- Overall complexity: $O(n^2r^4 + mr + r^6)$

Time = 7.5s, n=3328 Can be reduced to $O(nr^2 + mr + r^6)$

9 U. Kang, Hanghang Tong, Jimeng Sun. Fast Random Walk Graph Kernel. SDM 2012

Challenges

ARK: Good for static graphs

What if graphs are evolving over time **Dynamic Static**

Lab

Motivation

Cheetah-D for Directed Graphs

- Experimental Results
- Conclusion

Cheetah-D: graph kernel tracking

Step 0: Low rank approx on ΔA

► Property: • SVD on A_0 takes: O(mr + nr)• SVD on ΔA takes: $O(m'r' + nr') \ll O(mr + nr)$ $[m' \ll m, r' \ll r]$

Step 1: Partial QR Decomposition

Intuition: Case 1: $x_1 \in \text{span}(u_1, u_2)$

 u_2

$$A = \begin{bmatrix} U_0 & X \end{bmatrix} \begin{bmatrix} \Lambda_0 & 0 \\ 0 & Y \end{bmatrix} \begin{bmatrix} V_0 & Z \end{bmatrix}' \\ = U_0 S \begin{bmatrix} \Lambda_0 & 0 \\ 0 & Y \end{bmatrix} T' V'_0$$

 $u_1u_2x_1 = u_1u_2 \times$

→Property: • Efficiency: takes O(nr²) [r' ≪ r] • Effectiveness: No extra error

Effectiveness: No extra error

- **Property:** Efficiency: takes $O((r + r')^3) [r' \ll r]$
 - Effectiveness: No extra error

Step 3: Rotate Orthonormal Basis

→Property: • Complexity: O(nr²) • Overall SVD Update Complexity: O(nr² + m'r' + nr'²)

Re-compute SVD: $O(nr^2 + mr)$

Analysis and Variants

- Time complexity of *Cheetah-D*: $O(nr^2 + nr'^2 + r^6)$
- Comparison Example (n = 3328, r = 500, r' = 5)
 - ARK:7.5s
 - Ours:0.4s
- Variants
 - Undirected graphs
 - Attributed graphs

Cheetah-D Algorithm Sketch

t = 1, **Initialize** SVD of A1 and A2

```
for t=2,3,...

Update SVD for A1 \leftarrow O(n(r^2 + r'^2))

Update SVD for A2 \leftarrow O(n(r^2 + r'^2))

Update Ker(A1,A2) \leftarrow O(nr^2 + r^6)

end
```


Motivation

Cheetah-D for Directed Graphs

Experimental Results

Conclusion

Case Study — MTA Bus Traffic

Graph construction

- Monitor traffic volume of 30 bus stops on 3 routes, from Monday, 03/24/2014 — Sunday, 03/30/2014
- Represent each stop as a time series where each timestamp is traffic volume within each hour
- On each day, build a graph for the 30 stops using Granger causality test

Graph kernel computation

Graph kernel is computed between two graphs of two consecutive days

Case Study — MTA Bus Traffic

Lab

Relative Error

ın)

Sat

All cases, Err <0.02%

 $\bar{n} = 4183, \bar{m} = 5692$

Arizona State University

Avg Error vs. Rank

0.8

Running Time vs. Rank

Scalability

Quality vs. Speed

Arizona State University

Motivation

Cheetah-D for Directed Graphs

Experimental Results

Conclusion

Conclusion

Goal: track graph kernel of dynamic graphs

Our Solution: Cheetah-D

- Key idea: track low-rank approx
- Results:
 - **★** Complexity: $O(nr^2 + nr'^2 + r^6)$
 - ★ In practice: ~15x faster, Err<0.05%</p>
- More in paper:

★ Cheetah-U for undirected graphs

 \star Error bound analysis

