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Graphs are Everywhere 
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Collaboration Networks US Power Grid Bus Network

Brain Networks Patient Networks Hospital Networks
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Application 1: Web Mining
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1. For each entity, construct a neighborhood graph by breadth-first search up 
to depth k 

2. Apply graph kernel in kernel based learning methods

Lösch, Uta, Stephan Bloehdorn, and Achim Rettinger. "Graph kernels for RDF data." The Semantic Web: Research 
and Applications. Springer Berlin Heidelberg, 2012. 

Q: How similar are the two graphs? 
A: Graph Kernel
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Application 2: Computer Vision

4

1. For each image, represent it as a segmentation graph 

2. Apply graph kernel in kernel based learning methods
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Figure 1. Three sample images, two of them annotated; their regions (d,e,f); and their graph
(g). (Figures look best in color.)

In this example, we consider only =1 nearest neighbor, to
avoid cluttering the diagram.
To solve the auto-captioning problem (Problem 1), we

need to develop a method to find good caption words for
image . This means that we need to estimate the
affinity of each term (nodes , , ), to node . We
discuss it next.

Captioning by random walk This concludes the first
step of our approach: We propose to turn the image cap-
tioning problem into a graph problem. Thus, we can tap the
sizable literature of graph algorithms and use off-the-shelf
methods for assigning importance to vertices in a graph,
as well as determining how related is a term “tiger” (rep-
resented, say, by node “ ”= in the graph), to the un-
captioned image (represented by node, say “ ” = in the
graph). The plan is to caption the new image with the most
“important” term nodes.

We have many choices: electricity based approaches
[8, 19]; random walks (pageRank, topic-sensitive pageR-
ank) [6, 10]; hubs and authorities [12]; elastic springs [15].
In this work, we propose to use random walk with restart
(“RWR”) for estimating the importance/affinity of node “ ”
with respect to (starting) node “ ”. But, again, the specific
choice of method is orthogonal to our framework.
The “random walk with restarts” operates as follows: to

compute the importance/affinity of node “ ” for node “ ”,
consider a random walker that starts from node “ ”. At
every time-tick, the walker chooses randomly among the
available edges, with one modification: before he makes a
choice, he goes back to node “ ” with probability . Let

denote the steady state probability that our random
walker will find himself at node “ ”. Then, is what
we want, the importance of “ ” with respect to “ ”.
Definition 1 The importance of node with respect to
starting node is the steady state probability of a
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Harchaoui, Zaïd, and Francis Bach. "Image classification with segmentation graph kernels."  
CVPR 2007.

Q: How similar are the two graphs? 
A: Graph Kernel
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Application 3: Neuroscience
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Q: How similar are the two graphs? 
A: Graph Kernel

1. For each brain image, represent it as a graph 

2. Apply graph kernel in kernel based learning methods

L. Shi, H. Tong, X. Mu: BrainQuest: Perception-Guided Visual Brain Comparison, 2015.
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Random Walk based Graph Kernel
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Intuitions: 
1. Compare similarity of every pair of  nodes from each graph 
— Eg: (1,2) vs (a, j)        less similar 
           (1,5) vs (a,e)        more similar 
2. Node pair similarity is measured by random walks 
3. Two graphs are similar if they share many similar node pairs

!
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Kronecker Product Graph
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S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt. Graph 
Kernels. Journal of Machine Learning Research, 11:1201–1242, April 2010.

One Random Walk on 

One Random Walk on 

A1

A2

+ = One Random Walk on 

Direct Product Graph

S.V.N. Vishwanathan: Graph Kernels, Page 14
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RWR Graph Kernel — Formulation
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Taking expectations instead of summing

Ker(G1, G2) =
P

k c
kq0⇥A

k
⇥p⇥

= q0⇥(I � cA⇥)�1p⇥

Computational challenge: 

•       is of size  
  

•         (Direct computation) or          (Sylvester equation)     

A⇥

O(n6)

n2 ⇥ n2

O(n3)

S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt. Graph 
Kernels. Journal of Machine Learning Research, 11:1201–1242, April 2010.

Time > 1h, n=3328
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Speed up — ARK
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Idea: perform low-rank approx on both graphs

Table 1: Symbols
Symbols Definition

G a graph
A(t) adjacency matrix at time t

�A(t) di↵erence matrix of the graph at
time t

U(t),⇤(t) eigen pair of A(t)

Ker(t)(G1,G2) exact graph kernel function on
graphs G1 and G2 at time t

K̂er
(t)
(G1,G2) approximate graph kernel func-

tion on graphs G1 and G2 at
time t

n number of nodes in a graph
m number of edges in a graph
c decay factor in random walk ker-

nel
dn number of node labels
r reduced rank after low rank ap-

proximation of A(t)

r0 reduced rank after low rank ap-
proximation of �A(t)

icantly faster than the existing alternatives; (2) achieve
very high approximation accuracy with proven error
bounds and (3) scale sub-linearly.

The main contributions of this paper are summa-
rized as follows:

1. Problem Definitions. We define the novel
Graph Kernel Tracking problem, to track the
kernel of time evolving graphs. To our best knowl-
edge, this is the first e↵ort on this important topic.

2. Algorithm and Analysis. We propose a family
of fast algorithms (Cheetah) for Graph Kernel

Tracking and analyze its approximation error
bounds as well as the complexity.

3. Experimental Evaluations. We perform exten-
sive experiments on real world graphs, to validate
the e↵ectiveness and e�ciency of our algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 defines Graph Kernel Tracking . Section 3
and 4 present the proposed Cheetah algorithms for both
undirected and directed graphs. Section 5 shows the
experimental results. After reviewing related work in
Section 6, we conclude the paper in Section 7.

2 Problem Definition

Table 1 lists the main symbols used throughout the
paper. We use bold upper-case letters for matrices

(e.g., A) and bold lower-case letters for vectors (e.g., v).
Parenthesized superscript is used to denote time (e.g.,
A(t) is the time-aggregate adjacency matrix at time t).
For matrix indexing, we use a convention similar to
Matlab, e.g., A(i, j) is the element at the ith row and jth

column of the matrix A, and A(:, j) is the jth column
of A, etc. Besides, we use prime for matrix transpose
(e.g., A0 is the transpose of A).

For two static graphs G1 and G2 with adjacency
matrices A1 and A2, the random walk based graph
kernel between them can be computed as follows [32]:

(2.1)
Ker(G1,G2) = (q1

0 ⌦q2
0)(I� cA1

0 ⌦A2
0)�1(p1 ⌦p2)

where c is a decay factor for discounting longer
walks, p1,p2 are starting probabilities for G1,G2 and
q1,q2 are ending probabilities for G1,G2. The idea is
to sum up all common walks with all possible lengths
on the two graphs. The most time consuming part
is the matrix inverse. The state-of-the-art algorithm
proposed in [18] greatly reduces the computation cost
by performing low rank approximation on both A1 and
A2, following the observation that real world graphs
have low intrinsic ranks.

In the dynamic setting, initially at time step t = 0,
we observe the two graphsG1 andG2 and their random
walk graph kernel can be computed the same as in the
static case above. At each time step, both graphs can
evolve (e.g., nodes and edges are added/deleted, and
edge weight changes). We use �A(t) to denote such
updates of G at time step t. For example, given a co-
author network for an annual conference, �A(t)(i, j) is
the number of papers authors i and j write together
for the conference at year t. With these notations, our
problem can be formally defined as follows:

Problem 1. Graph Kernel Tracking

Given: (1) adjacency matrices A1 and A2 of two time-
evolving graphs G1 and G2 at initial time step,
(2) a sequence of updates �A1

(t) and �A2
(t), (t =

1, 2, . . .)

Track: the graph kernel Ker(t)(G1,G2), (t = 1, 2, . . .)

As mentioned above, algorithm in [18] speeds up
the random walk graph kernel by computing the low
rank approximation for both graphs. However, in the
dynamic setting, it would be very costly to re-compute
the low-rank approximation of the input graphs at
each time step. Based on this observation, we devote
ourselves to searching for e�cient ways to track the low-
rank approximation of the input graphs. Depending
on whether the input graphs are undirected or directed

Step 1:  
Top-r low-rank approx:

⇤̃
• Matrix of size               , easy to inverse 
• Overall complexity: 

r2 ⇥ r2

Step 2:  
Matrix-inverse Lemma:

O(n2r4 +mr + r6)

U1⇤1V
0
1 U2⇤2V

0
2

Ker(G1,G2) ⇡ (q0
1p1)(q

0
2p2) + c(q0

1U1 ⌦ q0
2U2)⇤̃(V0

1p1 ⌦V0
2p2)

= ((⇤1 ⌦⇤2)
�1 � c(V0

1 ⌦V0
2)(U1 ⌦U2))

�1

U. Kang, Hanghang Tong, Jimeng Sun. Fast Random Walk Graph Kernel. SDM 2012

Time = 7.5s, n=3328 Can be reduced to O(nr2 +mr + r6)
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Challenges 
▪ ARK: Good for static graphs 

▪ What if graphs are evolving over time
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Q: How to track graph kernel efficiently?

Static Dynamic
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Figure 1. Three sample images, two of them annotated; their regions (d,e,f); and their graph
(g). (Figures look best in color.)

In this example, we consider only =1 nearest neighbor, to
avoid cluttering the diagram.
To solve the auto-captioning problem (Problem 1), we

need to develop a method to find good caption words for
image . This means that we need to estimate the
affinity of each term (nodes , , ), to node . We
discuss it next.

Captioning by random walk This concludes the first
step of our approach: We propose to turn the image cap-
tioning problem into a graph problem. Thus, we can tap the
sizable literature of graph algorithms and use off-the-shelf
methods for assigning importance to vertices in a graph,
as well as determining how related is a term “tiger” (rep-
resented, say, by node “ ”= in the graph), to the un-
captioned image (represented by node, say “ ” = in the
graph). The plan is to caption the new image with the most
“important” term nodes.

We have many choices: electricity based approaches
[8, 19]; random walks (pageRank, topic-sensitive pageR-
ank) [6, 10]; hubs and authorities [12]; elastic springs [15].
In this work, we propose to use random walk with restart
(“RWR”) for estimating the importance/affinity of node “ ”
with respect to (starting) node “ ”. But, again, the specific
choice of method is orthogonal to our framework.
The “random walk with restarts” operates as follows: to

compute the importance/affinity of node “ ” for node “ ”,
consider a random walker that starts from node “ ”. At
every time-tick, the walker chooses randomly among the
available edges, with one modification: before he makes a
choice, he goes back to node “ ” with probability . Let

denote the steady state probability that our random
walker will find himself at node “ ”. Then, is what
we want, the importance of “ ” with respect to “ ”.
Definition 1 The importance of node with respect to
starting node is the steady state probability of a
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Cheetah-D: graph kernel tracking 
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                                       Ideas:   
Avoid: re-computing low-rank approx [ARK] 
Goal: track low-rank structure efficiently [Cheetah-D]

Table 1: Symbols
Symbols Definition

G a graph
A(t) adjacency matrix at time t

�A(t) di↵erence matrix of the graph at
time t

U(t),⇤(t) eigen pair of A(t)

Ker(t)(G1,G2) exact graph kernel function on
graphs G1 and G2 at time t

K̂er
(t)
(G1,G2) approximate graph kernel func-

tion on graphs G1 and G2 at
time t

n number of nodes in a graph
m number of edges in a graph
c decay factor in random walk ker-

nel
dn number of node labels
r reduced rank after low rank ap-

proximation of A(t)

r0 reduced rank after low rank ap-
proximation of �A(t)

icantly faster than the existing alternatives; (2) achieve
very high approximation accuracy with proven error
bounds and (3) scale sub-linearly.

The main contributions of this paper are summa-
rized as follows:

1. Problem Definitions. We define the novel
Graph Kernel Tracking problem, to track the
kernel of time evolving graphs. To our best knowl-
edge, this is the first e↵ort on this important topic.

2. Algorithm and Analysis. We propose a family
of fast algorithms (Cheetah) for Graph Kernel

Tracking and analyze its approximation error
bounds as well as the complexity.

3. Experimental Evaluations. We perform exten-
sive experiments on real world graphs, to validate
the e↵ectiveness and e�ciency of our algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 defines Graph Kernel Tracking . Section 3
and 4 present the proposed Cheetah algorithms for both
undirected and directed graphs. Section 5 shows the
experimental results. After reviewing related work in
Section 6, we conclude the paper in Section 7.

2 Problem Definition

Table 1 lists the main symbols used throughout the
paper. We use bold upper-case letters for matrices

(e.g., A) and bold lower-case letters for vectors (e.g., v).
Parenthesized superscript is used to denote time (e.g.,
A(t) is the time-aggregate adjacency matrix at time t).
For matrix indexing, we use a convention similar to
Matlab, e.g., A(i, j) is the element at the ith row and jth

column of the matrix A, and A(:, j) is the jth column
of A, etc. Besides, we use prime for matrix transpose
(e.g., A0 is the transpose of A).

For two static graphs G1 and G2 with adjacency
matrices A1 and A2, the random walk based graph
kernel between them can be computed as follows [32]:

(2.1)
Ker(G1,G2) = (q1

0 ⌦q2
0)(I� cA1

0 ⌦A2
0)�1(p1 ⌦p2)

where c is a decay factor for discounting longer
walks, p1,p2 are starting probabilities for G1,G2 and
q1,q2 are ending probabilities for G1,G2. The idea is
to sum up all common walks with all possible lengths
on the two graphs. The most time consuming part
is the matrix inverse. The state-of-the-art algorithm
proposed in [18] greatly reduces the computation cost
by performing low rank approximation on both A1 and
A2, following the observation that real world graphs
have low intrinsic ranks.

In the dynamic setting, initially at time step t = 0,
we observe the two graphsG1 andG2 and their random
walk graph kernel can be computed the same as in the
static case above. At each time step, both graphs can
evolve (e.g., nodes and edges are added/deleted, and
edge weight changes). We use �A(t) to denote such
updates of G at time step t. For example, given a co-
author network for an annual conference, �A(t)(i, j) is
the number of papers authors i and j write together
for the conference at year t. With these notations, our
problem can be formally defined as follows:

Problem 1. Graph Kernel Tracking

Given: (1) adjacency matrices A1 and A2 of two time-
evolving graphs G1 and G2 at initial time step,
(2) a sequence of updates �A1

(t) and �A2
(t), (t =

1, 2, . . .)

Track: the graph kernel Ker(t)(G1,G2), (t = 1, 2, . . .)

As mentioned above, algorithm in [18] speeds up
the random walk graph kernel by computing the low
rank approximation for both graphs. However, in the
dynamic setting, it would be very costly to re-compute
the low-rank approximation of the input graphs at
each time step. Based on this observation, we devote
ourselves to searching for e�cient ways to track the low-
rank approximation of the input graphs. Depending
on whether the input graphs are undirected or directed

top-r low-rank approx:

�A1 �A2

U1⇤1V
0
1 U2⇤2V

0
2

(SVD in this paper)
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Step 0: Low rank approx on 
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⇡

u1u2

⇥

⇤0

⇥A0

v 1
v 2

= ⇥ ⇥
Y

�A

x1

z 1

A0 ⇡ U0⇤0V
0
0

�A = XY Z 0
A = A0 +�A

= [U0 X]


⇤0 0
0 Y

�
[V0 Z]0

➡Intuition:

➡Details:

➡Property:• SVD on        takes: 
• SVD on        takes: 

A0
�A

O(mr + nr)

O(m0r0 + nr0) ⌧ O(mr + nr)

�A

[m0 ⌧ m, r0 ⌧ r]

(m = 5, r = 2)

(m0 = 2, r0 = 1)
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Step 1: Partial QR Decomposition
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u1

u2
x1

Case 1: x1 2 span(u1, u2)

u1u2 =u1u2⇥x1

S

[U0 X] = U0S
A = [U0 X]


⇤0 0
0 Y

�
[V0 Z]0

= U0S


⇤0 0
0 Y

�
T 0V 0

0

• Efficiency: takes  
• Effectiveness: No extra error

O(nr02)

➡Intuition:

➡Details:

➡Property: [r0 ⌧ r]
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Step 1: Partial QR Decomposition
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Case 2: x1 /2 span(u1, u2)

u1

u2

qx1 u1u2 =

u1u2 q ⇥

x1

S

[U0 X] = [U0 q]S A = [U0 X]


⇤0 0
0 Y

�
[V0 Z]0

= [U0 �Q]S


⇤0 0
0 Y

�
T 0[V0 �Z]0

• Efficiency: takes  
• Effectiveness: No extra error

O(nr02)

Similar Partial  
QR decomp on Z

➡Intuition:

➡Details:

➡Property: [r0 ⌧ r]
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Step 2: Full SVD on a Small Matrix
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⇥ ⇥

= ⇥ ⇥

⇤
Updated ⇤

Y
S

T 0

L R0

⇤0

A = [U0 �Q]S


⇤0 0
0 Y

�
T 0[V0 �Z]0

= [U0 �Q]L⇤R0T 0[V0 �Z]0

• Efficiency: takes 
• Effectiveness: No extra error 

O((r + r0)3)

M
(r + r0)⇥ (r + r0)

M = S


⇤0 0
0 Y

�
T 0 = L⇤R0

➡Intuition:

➡Details:

➡Property: [r0 ⌧ r]

=
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Step 3: Rotate Orthonormal Basis
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u1u2 qRotate by
L

• Complexity: O(nr2)

• Overall SVD Update Complexity: 

R

Rotate byv1v2 z

U = [U0 �Q]L
V = [V0 �Z]R

➡Intuition:

➡Details:

➡Property:

Re-compute SVD:O(nr2 +mr)

O(nr2 +m0r0 + nr02)
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Analysis and Variants
▪ Time complexity of Cheetah-D:  

▪ Comparison Example 

• ARK:7.5s 

•Ours:0.4s 
▪ Variants 

• Undirected graphs 

• Attributed graphs
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(n = 3328, r = 500, r0 = 5)

Cheetah-D Algorithm Sketch 

t = 1, Initialize SVD of A1 and A2 

for t=2,3,… 
      Update SVD for A1 
      Update SVD for A2 
      Update Ker(A1,A2) 
end 

 O(n(r2 + r02))

 O(n(r2 + r02))

ARK:
O(nr2 + nr02 + r6)
O(n2r4 +mr + r6)

 O(nr2 + r6)
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Case Study — MTA Bus Traffic
▪ Graph construction 
• Monitor traffic volume of 30 bus stops on 3 routes, 

from Monday, 03/24/2014 — Sunday, 03/30/2014 

• Represent each stop as a time series where each 
timestamp is traffic volume within each hour  

• On each day, build a graph for the 30 stops using 
Granger causality test 

▪ Graph kernel computation 
• Graph kernel is computed between two graphs of two 

consecutive days

20



Arizona State University

Case Study — MTA Bus Traffic

21

4

5

6

7

8

9

10

(Mon,Tue) (Tue, Wed) (Wed,Thu) (Thu,Fri) (Fri,Sat) (Sat,Sun)

N
or

m
al

iz
ed

 K
er

(G
1,

G
2)

× 10ି଻

Tue

Fri Sat

Wed

Figure 1: Case study – real time MTA bus tra�c

data in New York City using the API provided at
MTA Bus Time 1. Tra�c volume at 30 bus stops
on 3 routes are monitored from Monday, March 24,
2014 to Sunday, March 30, 2014. On each day,
we first obtain tra�c volume within each hour as
a time series for each bus stop and then build a
causality graph for these 30 stops using Granger
causality test [15].

• AS. This is the communication network of routers
constructed by BGP logs in Autonomous Systems
(AS) [21]. The dataset contains 733 daily instances
which span an interval of 785 days from November
8, 1997 to January 2, 2000. AS exhibits both
addition and deletion of nodes and edges over the
time span. The number of nodes ranges from 103
to 6474 and the number of edges ranges from 243
to 13,233.

5.2 E↵ectiveness Results
Case study on MTA bus tra�c: Normalized graph
kernels2 are computed on two graphs of two consecutive
days, e.g., kernels of Monday and Tuesday, Tuesday and
Wednesday. Figure 1 shows the trend of kernels over a
week. Kernels between weekdays change smoothly. We
observe a sharp drop of the kernel between Friday and
Saturday, which reflects the fact that tra�c patterns
on weekdays and weekends are di↵erent since MTA
runs completely di↵erent bus schedules during weekdays
and weekend. The kernel goes up on Sunday because
Saturday and Sunday share similar tra�c patterns.
Accuracy vs. time stamp: In order to evaluate how
accurate our method is for tracking graph kernels, we
extract two graphs from AS, each of size n = 3328.
At each time stamp, we randomly pick 50 nodes and
connect each to 100 other random nodes. We use

1Available at http://bustime.mta.info
2The graph kernel is normalized by the number of edges.
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Figure 2: Relative error of Cheetah-U via UpdateEigen
on AS at di↵erent time stamp with di↵erent r.
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relative error computed as below for our evaluation
criteria:

(5.10) Relative Error =

|Ker(G1,G2)� ˆ

Ker(G1,G2)|
Ker(G1,G2)

Figure 2 shows relative error of Cheetah-U at
di↵erent time stamps with di↵erent reduced rank r while
r0 is fixed. Here r0 is the reduced rank of update matrix,
i.e., we perform top-r0 eigen decomposition on �A in
UpdateEigen. Figure 3 shows relative error of Cheetah-
U at di↵erent time stamps with di↵erent reduced
rank r0 while r is fixed. Both figures clearly show
(1) the accumulated error of our method grows slowly
(sublinearly) over time; and (2) the overall accumulated
error is very small (less than 0.02%). Notice that,
results using the alternative methods for updating eigen
pairs (referred to as ‘first-order’ and ‘second-order’,
see the supplemental document for the details of these
methods) are not shown here since even at t = 1 the
error is in the order of 104.
Accuracy vs. rank: In order to evaluate how accuracy
of Cheetah-U changes with respect to the reduced rank

Weekdays Schedule Weekends Schedule
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di↵erent time stamps with di↵erent reduced rank r while
r0 is fixed. Here r0 is the reduced rank of update matrix,
i.e., we perform top-r0 eigen decomposition on �A in
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rank r0 while r is fixed. Both figures clearly show
(1) the accumulated error of our method grows slowly
(sublinearly) over time; and (2) the overall accumulated
error is very small (less than 0.02%). Notice that,
results using the alternative methods for updating eigen
pairs (referred to as ‘first-order’ and ‘second-order’,
see the supplemental document for the details of these
methods) are not shown here since even at t = 1 the
error is in the order of 104.
Accuracy vs. rank: In order to evaluate how accuracy
of Cheetah-U changes with respect to the reduced rank

All cases, Err <0.02%
n̄ = 4183, m̄ = 5692
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has di↵erent reduced rank r0 for the update matrix in
UpdateEigen.
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Figure 5: Running time of Cheetah-U on AS with
di↵erent reduced rank r.

r, we run the above experiment under di↵erent r and
average the relative error over 10 time stamps. To
see how the approximation of the updates a↵ects the
accuracy, we also vary the reduced rank r0. As can
be seen from Figure 4, the error quickly drops when r
increases.

5.3 E�ciency Results
Running time vs. rank: We compare the speed of
Cheetah-U with ARK-U+ proposed in [18] varying
reduced rank r and average the running time over 10
time stamps. We set reduced rank of update matrix as
r0 = 5. Figure 5 clearly shows that our method is much
faster than ARK-U+.
Scalability: In order to evaluate the scalability of our
method, we run Cheetah-U on graphs with di↵erent
sizes n. Figure 6 shows the running time under di↵erent
r while fixing r0 = 5. Figure 7 shows the running time
under di↵erent r0 while fixing r = 100. In both figures,
we can see that the running time grows linearly wrt the
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Figure 6: Running time of Cheetah-U on AS with
di↵erent graph size n and reduced rank r.
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Figure 7: Running time of Cheetah-U on AS with
di↵erent graph size n and reduced rank r0.

size of the input graphs, which is consistent with our
complexity analysis in Theorem 3.2.
Quality vs. speed: Finally, we evaluate how the pro-
posed method balances between the quality and speed.
In Figure 8, we show relative error vs. running time of
di↵erent methods. Each dot in the figure is with di↵er-
ent reduced rank r. Clearly, our method achieves the
best trade-o↵ between quality and time.

6 Related Work

In this section, we review the related work in terms of
(a) graph kernel, (b) dynamic graph mining.

Graph Kernel. Graph kernel provides an expres-
sive and non-trivial measure of similarity on graphs
(see [4] for a comprehensive review). It has seen appli-
cations ranging from automated reasoning [31] to bioin-
formatics/chemoinformatics [11, 26]. A recent interest-
ing work uses graph kernel to address team member
replacement problem [22]. According to what substruc-
tures used for comparison in two graphs, graph kernels

When r>50, Err<0.05%
n̄ = 4183, m̄ = 5692
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r, we run the above experiment under di↵erent r and
average the relative error over 10 time stamps. To
see how the approximation of the updates a↵ects the
accuracy, we also vary the reduced rank r0. As can
be seen from Figure 4, the error quickly drops when r
increases.

5.3 E�ciency Results
Running time vs. rank: We compare the speed of
Cheetah-U with ARK-U+ proposed in [18] varying
reduced rank r and average the running time over 10
time stamps. We set reduced rank of update matrix as
r0 = 5. Figure 5 clearly shows that our method is much
faster than ARK-U+.
Scalability: In order to evaluate the scalability of our
method, we run Cheetah-U on graphs with di↵erent
sizes n. Figure 6 shows the running time under di↵erent
r while fixing r0 = 5. Figure 7 shows the running time
under di↵erent r0 while fixing r = 100. In both figures,
we can see that the running time grows linearly wrt the
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Figure 6: Running time of Cheetah-U on AS with
di↵erent graph size n and reduced rank r.
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Figure 7: Running time of Cheetah-U on AS with
di↵erent graph size n and reduced rank r0.

size of the input graphs, which is consistent with our
complexity analysis in Theorem 3.2.
Quality vs. speed: Finally, we evaluate how the pro-
posed method balances between the quality and speed.
In Figure 8, we show relative error vs. running time of
di↵erent methods. Each dot in the figure is with di↵er-
ent reduced rank r. Clearly, our method achieves the
best trade-o↵ between quality and time.

6 Related Work

In this section, we review the related work in terms of
(a) graph kernel, (b) dynamic graph mining.

Graph Kernel. Graph kernel provides an expres-
sive and non-trivial measure of similarity on graphs
(see [4] for a comprehensive review). It has seen appli-
cations ranging from automated reasoning [31] to bioin-
formatics/chemoinformatics [11, 26]. A recent interest-
ing work uses graph kernel to address team member
replacement problem [22]. According to what substruc-
tures used for comparison in two graphs, graph kernels

ARK-U+

OURS
10x



Arizona State University

Scalability

25

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0 100 200 300 400 500

R
el

at
iv

e 
E

rr
or

Reduced rank r

r'=5 r'=20

r'=40 r'=60

r'=80 r'=100

Figure 4: Average error vs. reduced rank r. Each curve
has di↵erent reduced rank r0 for the update matrix in
UpdateEigen.
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di↵erent reduced rank r.

r, we run the above experiment under di↵erent r and
average the relative error over 10 time stamps. To
see how the approximation of the updates a↵ects the
accuracy, we also vary the reduced rank r0. As can
be seen from Figure 4, the error quickly drops when r
increases.

5.3 E�ciency Results
Running time vs. rank: We compare the speed of
Cheetah-U with ARK-U+ proposed in [18] varying
reduced rank r and average the running time over 10
time stamps. We set reduced rank of update matrix as
r0 = 5. Figure 5 clearly shows that our method is much
faster than ARK-U+.
Scalability: In order to evaluate the scalability of our
method, we run Cheetah-U on graphs with di↵erent
sizes n. Figure 6 shows the running time under di↵erent
r while fixing r0 = 5. Figure 7 shows the running time
under di↵erent r0 while fixing r = 100. In both figures,
we can see that the running time grows linearly wrt the
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Figure 6: Running time of Cheetah-U on AS with
di↵erent graph size n and reduced rank r.
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Figure 7: Running time of Cheetah-U on AS with
di↵erent graph size n and reduced rank r0.

size of the input graphs, which is consistent with our
complexity analysis in Theorem 3.2.
Quality vs. speed: Finally, we evaluate how the pro-
posed method balances between the quality and speed.
In Figure 8, we show relative error vs. running time of
di↵erent methods. Each dot in the figure is with di↵er-
ent reduced rank r. Clearly, our method achieves the
best trade-o↵ between quality and time.

6 Related Work

In this section, we review the related work in terms of
(a) graph kernel, (b) dynamic graph mining.

Graph Kernel. Graph kernel provides an expres-
sive and non-trivial measure of similarity on graphs
(see [4] for a comprehensive review). It has seen appli-
cations ranging from automated reasoning [31] to bioin-
formatics/chemoinformatics [11, 26]. A recent interest-
ing work uses graph kernel to address team member
replacement problem [22]. According to what substruc-
tures used for comparison in two graphs, graph kernels

Scale near linearly
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Figure 8: Relative error vs. running time of comparison
methods on AS.

can be summarized into three categories: kernels based
on walks [12, 32, 33, 13, 5], kernels based on limited-
sized subgraphs [17, 25, 20] and kernels based on sub-
tree patterns [23, 24, 16]. Among them, graph kernel
based on random walk has been successfully applied in
many real world scenarios [6]. The idea is to count the
number of common walks when simultaneous walks are
performed on the two graphs. One challenge of ran-
dom walk based graph kernel lies in computational cost.
The best known time complexity for exact computation
is O(n3) by reducing to the problem of solving a lin-
ear system [32, 33]. With low rank approximation, the
computation can be further accelerated with high ap-
proximation accuracy [18].

Dynamic Graph Mining. Most real world
graphs are evolving over time, hence it’s of practical
value to track some properties of the dynamic graphs,
and do it in an e�cient way. To track the low-rank
approximation of graphs, CMD [28] computes sparse
example-based decompositions by sampling from the
original matrix without duplications. Colibri meth-
ods in [29] further speed up the computation by judi-
ciously sampling linearly independent columns. Evolu-
tionary Nonnegative Matrix Factorization (eNMF) [34]
incrementally updates the factorized matrices assum-
ing smoothness between two consecutive time stamps.
Proximity and centrality are two important measures on
graphs. To monitor these, fast algorithms on bipartite
graphs are designed [30] by leveraging the fact that rank
of graph updates is small. Our work di↵ers from [30] in
that we track the similarity of two graphs while authors
in [30] focus on similarity of two nodes on one graph.
As for communities in dynamic graphs, work include
studying how social groups form and evolve [2], find
communities in dynamic graphs and spot discontinuity
time points [27]. On a single dynamic graph, there are
also many work on tracking its spectrum [7, 9].

7 Conclusion

In this paper, we propose Cheetah to e�ciently track
the graph kernels of two time-evolving graphs. To the
best of our knowledge, we are the first to study kernel
tracking in dynamic setting. The main contributions
include:

1. Problem Definitions. A novel Graph Kernel

Tracking problem is first defined, along with two
derivative problems:EVD Tracking and SVD

Tracking .

2. Algorithm and analysis. A family of Cheetah al-
gorithms are proposed to address the above prob-
lems. We show the correctness and analyze the
complexities of the algorithms.

3. Experimental Evaluations. Case study and
performance evaluation on real world data present
the usefulness and superiority of our algorithms.

Our work can be generalized to attributed graphs (see
supplement) while such attribute information remains
the same. However, in reality, attributes can also
change with time, e.g., in citation network, an author
might shift from computer vision to data mining. One
future direction is to design algorithms for graph kernel
tracking that can also capture such attribute dynamics.
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