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From the Ancient Philosophy Jis

The whole is greater than the sum of its
parts. -- Aristotle

= Whole: a collection of parts

= Parts: individual elements

= Aristotle’s hypothesis:

— whole > sum of parts
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Part-Whole iIn Team Science

Film Crew Sales Team

Whole — Team
Parts — Team members
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Part-Whole Beyond Teams

Autonomous System
Whole: system
Parts: individual drones
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Community Question Answering
Whole: question
Parts: individual answers
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Stock Market
Whole: DJIA
Parts: individual stock

Parts of a passenger jet airplane
spoiler/speed brakes rudder segments
a7 fuel tanks {long range}

main fuel tanks .
turbofan engines \\’ EI
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spoiler/speed brakes
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crew flight deck and
cantrol cabin

weather radar < ;
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wheels first class cabin passenger entry turbofan engines angine oil tank

door and stairs
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System Reliability
Whole: system

Parts: individual component
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Qutcome of Part-Whole

@@1 Evaluation
gOUTSTANDING
‘ , Excellent
[1Very Good
- [1 Average
[ Below Average

Whole: Team Whole outcome: Team’s performance
Part: Members Part outcome: each member’s performance

Karen Blakeman ..
RBA Inft S Edit

nnnnn

Whole: Researcher Whole outcome: h-index
Part: Publications Part outcome: #citations of publications

Question: how can we predict the outcome of whole/parts?
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Predict the Part-Whole OQutcomes
= Existing Algorithmic Work

— Separate models for parts and whole

— Joint linear models
= Aristotle’s hypothesis: whole>sum(parts)
= Question: how to jointly predict part/whole

— by leveraging the part-whole relationship
beyond the linear models?
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Challenges -- Modeling

= Nonlinear Part-whole Relationship

— Max: impact of a question Is strongly
correlated with that of the best answe \

1004

Avg. Answer Impac

I
=
-

— Sparsity: team performance often dominated
by a few top-performing team members
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Challenges — Modeling (con’t)

= Part-part Interdependency
— Parts are connected via underlying network
— Impact of such interdependency on outcomes

Hypothesis-1: similar parts -> similar contribution to whole
Hypothesis-2: similar parts -> similar parts outcome

Question: how can we utilize
1. nonlinear part-whole relationship
2. part-part interdependency



Challenges -- Algorithm

Non-linearity
+ high complexity
Interdependency

Question: how to scale up the computation?

DATA
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Part-Whole Outcome Prediction

) [ |
Movies O m
(Whole) -

AcTo r_s/ATctr_esg -
(Parts) R
2
FP

e
yP

Given: 1. feature matrix for whole/part F°/FP
2. outcome vector for whole/part y° /y?

Predict: outcome of new whole/parts
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Roadmap

= Motivations
" PAROLE -- Modeling

— Generic Framework
— Modeling Part-Whole Relationship
— Modeling Part-Part Interdependency

= PAROLE -- Optimization
= Empirical Evaluations

= Conclusions
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A Generic Joint Prediction Framework -- PAROLE

" Formulation

min J =

+y@Qw?) + aw?))

Movie
(Whole)F° (15

—_—— == ——— - - ——- ——tem = == —

Actor/Actress
(Part) FP (@'

J.. parameter regularizer
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RO ad m ap ?/lv\?y\]”T ) ‘ ‘.“ nF°(2,:)
L Acta;;A;;;gg;“;."'
= Motivations Part)  FP(5 4
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" PAROLE -- Modeling

— Generic Framework

— Modeling Part-Part Interdependency
= PAROLE -- Optimization
= Empirical Evaluations

= Conclusions
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Agg(o;)
Modeling Part-Whole Relationship - %

= Overview: for each whole entity o;, define
e; = F°(i,:)w® — Agg(o;)

— e;. Measure the difference between
 predicted whole outcome using whole feature

 predicted whole outcome using aggregated parts
outcome

= Key idea: model part-whole relations by

« Different loss functions on e;

- Different aggregation functions Agg(-)
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: A4g9(0;)
Overview a % .

" |ntuition: whole « (weighted) sum of parts

Agglo) = ) alFP(j,:)w?
JjeP(0;)

— a}: weight of part j's contribution to the whole
0;' S outcome

" Remark:

— Characterize part-whole relationships
» Use different loss functions on e;

e Use different norms on a;
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. _ linear
Linear Part-Whole Relation % i

= [ntuition: Whole « linear combination of parts

— some parts play more important roles than the
others in contributing to the whole outcome

a Ng 2
2n, <=1 €

" Detalls: J,,, =

" Remark:

— aj = 1: the whole is the sum of its parts

; 1
— a} o . average coupling
L
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. sparse
Sparse Part-Whole Relation ;%% L
o

= |[ntuition: Whole « a few parts

— some parts have little or no effect on the whole
outcome

: a 1
= Details: J,, = n—OZ?ﬁl ~el+la;ly)

" Remark:

— The [, norm can shrink some part contributions

i
a; to exactly zero

— Nonlinear part-whole relation
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Ordered Sparse Part-Whole Relation

= |ntuition: Whole « a few top parts

— team performance is determined by not only a
few key members, but also the structural
hierarchy between them

= Details: J,, = %Z’{L"l(% ef +20.,(a;))

- 0, (%) = Ty lxlgw; = w'|x],: ordered
weighted [; norm

— w € K,,,: vector of non-increasing non-
negative weights
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Robust Part-Whole Relation

= |ntuition: Whole « parts that are not outliers

— sguared loss Is sensitive to outliers.

= Solution: robust regression model

= Details: J,, = %Z?ﬁl p(e;)

— p(+) Is robust estimator

Case o] < ¢ ol > ¢
Method €= ¢
Huber pg(e) %ez tle| — %tz
: 2 ;
Bisquare pg(e) | & {1-[1-(%)*]*} £

huber

p(e)
012 345867

IIIIIII

p(e)
1 2 3
1 1 1
I

[3%]
=1 @
[3%]
-
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Maximum Part-Whole Relationmf\x

" |ntuition: Whole « max(parts)

— team performance dominated by the best team
member/leader

= Detalls:
— Agg(o;) = max(parts'outcome) [not differentiable]
— Soft max function: max(xq, x5, ..., X,,) =
In(exp(x,) + exp(x,) + -+ + exp(xy,))
— Aggregation: Agg(o;) = In(X jep 0, eXP(FP(j,: )WP))

n
]po = - Z ’ ei2
2no i=1
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Summarize Part-Whole Relations
Agg(o;) Jno
- .
IR0 e = o ) 2n, Z el Wholel\| <O—n|rlrr1]ae>?(rparts)

_ a , Linear
Linear z a; FP(j,: )w?P o Z e Whole « linear
0 combination of parts
LEP(i - )wP a 1 :
ZaJF G, )w _Z(_eiz + Alagly) Nonlinear
n, 2 Whole « a few parts
al FP(j, )wP a 1 Nonlinear
Ordered Z j F0) —Z(— ef +10,,(a;))  Whole « a few top
Sparse n, 2
parts
2 a} FP(j, - Jw? o Nonlinear
Robust — / ple) Whole « parts that
0 are not outliers
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Roadmap

Actor/Actress

= Motivations Par)  FPG5
" PAROLE -- Modeling

— Generic Framework

— Modeling Part-Whole Relationship

= PAROLE -- Optimization
= Empirical Evaluations

= Conclusions
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Modeling Part-Part Interdependency

» Effect on the whole outcome

— Intuition: closely connected parts might have
similar contribution to the whole outcome

— Detalls:

o 1 1 i i
jpo:n—z §€?+>\’az'\1+§ > Ghilag, —af)?

i=1 k,leg(o:)

« Similar parts (large szz

— similar contributions (a., = a!)
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Modeling Part-Part Interdependency

= Effect on the parts outcome

— Intuition: closely connected parts might share
similar outcomes themselves

— Detalls:

6 np Np | |
Top = 5= 2 2 GH(EP(i.)w? — FP(j,)w?)’
"p iy j=1 FP(1,:)wP
12

4, HywP

14

» Similar parts (large G;;

— similar predicted outcomes (FP(i,:)wP = FP(j,: )wP)
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Roadmap

= Motivations

= PAROLE -- Modeling

= PAROLE -- Optimization
= Empirical Evaluations

= Conclusions
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Optimization Solution ees 22 -y
_ por)  FP(pB ¥ 4 e
. .
Formulation: Jix v s
: HFr2,:)
-] =Jow?) + ,(WP) + +

+ L, (w°, wP )

= Observation:

— not jointly convex w.r.t. w, w?, a’

— Convex w.r.t. to one block while fixing others

= Solution: block coordinate descent
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Block Coordinate Descent

= Three coordinate blocks: w?, wP,

l
a;

= Update one block while fixing others
= Update each block
— (proximal) gradient descent
% % % or proximal gradient update
ow° owpP “
Maximum Agg izn" ei(FO(i,:))’ a " _ZjE(p(oi)(Fp(j::)),yip N/A
o =1 Nolui=i ' Ejepon It
Linear Agg ni(Fo)r(Fowo — MFPwP) _ni (Fp)rMI(FoWo — MFPwP) e;(—FP(¢(0;),)wP) + Lzl-)ai
Sparse Agg %(FO)'(FOWO — MFPwP) _ni (FP)'M’(F°w® — MFPwP) z=a; - T[ei(_Fp(¢(0i)r(: ))Wp) + L7 a]
0 0 a; < proxyy, (2
Order Sparse Agg nﬁ(Fo)r(FoWo — MFPwP) _nﬁ (FP)'M'(FOw® — MFPwP) z = a; — t[e;(—=FP(¢(0y), ;()\),vp) + P a;]
R e a; « prox.q,, (2
Robust Agg a e dpled) ooy, (@ N dple) N a [0p(e;) _
mo 2 e Y 2 Tae T Dy O | [T CPY@) W) +




Optimization Properties

= Convergence and Optimality

_ Under mild conditions, the optimization alg
converges to a coordinate-wise minimum point

de\a‘\\s

= Complexity
— The alg scales linearly w.r.t. the size of part-
whole graph in both time and space

Whole % ? Complexity: 0(n,d, + n,d, + my,, + my,,)
SRR — ......... — e — n,. #whole e_n_tities
Parts & - 1 n,: #part entities
* \ My, #links from whole to parts
a m,,: #links in part-part network

d,,d,: feature dimension of whole, parts
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Roadmap

= Motivations

= PAROLE -- Modeling

= PAROLE -- Optimization
= Empirical Evaluations

= Conclusions
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Datasets

Math C(?;Veosttei‘;;‘ @Cf)‘t"g) 16,638 32,876

SO ?;Veoigg‘ @32‘;‘;; 1,966,272 4,282,570

DBLP (hA_E’rfzg;) : #Z?apt?(;n) 234681 129,756

Movie (;';"Eée) ACKE;S/[A&“; ess 5,043 37,365

=  Setup: sort whole in chronological order, gather first

x percent and corresponding parts as training, test on
last 10%

= Metric: root mean squared error (RMSE)
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Qutcome Prediction Performance

.........................................................

Overall RMSE

Bl Separate
ol e R Elsum |
= 5 g g [ ILinear
= 25Tl A I = [ IMax
s < O [ [Huber
> il S = [ Bisquare |
% S B | asso
§ """" AN A I OWL
2 | | | |
3
0

2 3 4 5
Percentage of Training

Math

asJleds

Observations

1. Joint prediction models >
separate models

2. Non-linear part-whole
relationships (max, Huber,
Bisquare, Lasso, OWL) >
linear relationships (Sum,
Linear)

3. Lasso and OWL are the

best methods in most
cases
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Outcome Prediction Performance

SO

DBLP
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Whole

RAMSE of Questions

| I Sum

[Linear
[ IMax
[ JHuber
-Bisquare
o.0s| M Lasso
I owL

1

Root Mean Squared Error
[=]

I Separate

15 2 3
Percentage of Training

0.35

Root Mean Squared Error

0.05

Parts

RMSE of Answers

[ JLinear

01| [ IMax

[_JHuber
I L asso

. I owL
1

I scparate
5| I sum

. Bisquare

15 2 3
Percentage of Training

(a) RMSE of question outcome prediction. (b) RMSE of answer outcome prediction.

I Scparate
. Sum

| CLinear
[CImax
[ IHuber
[ Bisquare
B Lass0
o I oL

Root Mean Squared Error

(a) RMSE of author outcome prediction.

RMSE of Authors

3

2
Percentage of Training

or

1=
@

=
W

Root Mean Squared Error
= = e
[ L3 -#I-

=1

-Separate i

Sum

[ Linear
[ IMax
:lHuber

1| X misquare |

I Lasso
oL
1

RMSE of Papers

2 a
Percentage of Training

(b) RMSE of paper outcome prediction.

Overall

o
&

Qverall RMSE

&
w
T

o

o
i

I Separate
B sum
[ Linear
[ IMax

[ THuber
[ sisquare
I _asso
Il owL

o
[

Root Mean Squared Error

B

[=]

1.5 2 a
Percentage of Training

(c) Overall RMSE.

0g

Overall RMSE

08
07
0.6

05

04| I Separate
- Sum
[ Linear
[ IMax
2 [ IHuber
[ pisquare

0.3

Root Mean Squared Error

o1

0 J Ll
2

3
Percentage of Training

(c) Overall RMSE.
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Effect of part-part interdependency

0.25 ;
Il PAROLE-Basic
[ |PAROLE-GraphForWhole
5 0.2f Il PAROLE-GraphForWhole&Parts
L0
3
Movie 5 015
= -
N
G
S 0.1}
=
°©
o
C 0.05}
0

Whole Part Overall

= PAROLE-Basic — no network information
= Part-part interdependency on whole outcome
and parts outcome both boost the performance
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Convergence Analysis

1

091

&
o

n
@)

Objective Function Value
= o &

=t
w

JL
10 20 30 40 50 60
Number of lterations

= PAROLE converges fast (25-30 iterations)

0.2
0
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Parameter Sensitivity

S TS T A N 0 S N B

Movie

= ¢ controls importance of part-whole relation
= [ controls importance of part-part interdependency
= Stable in a relatively large parameter space

- 35 - DG.LA Arizona State University



Scalablllty of PAROLE

sl |~ * T Llnear g > | |
o A0 .. a 1 ]
2 —*— Huber R \
E s Bisquare a 2
w 30 Lasso j_ -
SO o .| |—+—o0owL |
E
— 20 .
on
| -
£ 15} i
S
10 ]
oC
oL - —_H_ ] A - e - - JT - L il I
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
. . 4
part-whole graph size:n, + N, +M,, x 10

= PAROLE scales linearly w.r.t. part-whole graph size
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Roadmap

= Motivations

= PAROLE -- Modeling

= PAROLE -- Optimization
= Empirical Evaluations

" Conclusions
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Conclusions -- PAROLE

= Goals: leverage potentially non-linear part-
whole relationships for outcome prediction

= Solutions: PAROLE
— Modeling

— Optimization

* Block coordinate descent

« Converges to a coordinate-wise minimum point

« Scales linearly w.r.t. the part-whole graph size
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