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Abstract

Forecasting the success of scientific work has been at-
tracting extensive research attention in the recent years.
It is often of key importance to foresee the pathway
to impact for scholarly entities for (1) tracking re-
search frontier, (2) invoking an early intervention and
(3) proactively allocating research resources. Many re-
cent progresses have been seen in modeling the long-
term scientific impact for point prediction. However,
challenges still remain when it comes to forecasting the
impact pathway. In this paper, we propose a novel pre-
dictive model to collectively achieve a set of design ob-
jectives to address these challenges, including prediction
consistency and parameter smoothness. Extensive em-
pirical evaluations on real scholarly data validate the
effectiveness of the proposed model.

1 Introduction

The emerging research area on the “science of science”
(e.g., understanding the intrinsic mechanism that drives
high-impact scientific work, foreseeing the success of
scientific work at an early stage), has been attracting
extensive research attention in the recent years, most
of which are centered around the citation counts of
the scholarly entities (e.g., researchers, venues, papers,
institutes) [20, 14, 22]. From the prediction perspective,
more often than not, it is of key importance to forecast
the pathway to impact for scholarly entities (e.g., how
many citations a research paper will attract in each of
several consecutive years in the future). The impact
pathway often provides a good indicator of the shift of
the research frontier. For instance, the rapid citation
count increase of the deep learning papers reveals an
emerging surge of this topic. The impact pathway can
also help trigger an early intervention should the impact
trajectory step down in the near future. Research
resources could be more judiciously allocated if the
impact pathway can be forecast at an early stage.
For example, the research management agency could
proactively allocate more resources to those rising fields.
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The state of the art has mainly focused on modeling
the long-term scientific impact for the early prediction.
For example, Wang et al. [22] integrate preferential at-
tachment, a temporal citation trend and the underlying
“fitness” of the paper into designing a generative model
for the citation dynamics of individual papers. Yan et
al. [24] focus on designing effective scholarly features
(e.g., content features, author features, venue features)
for the future citation count prediction. Li et al. [14]
propose a joint predictive model to encourage similar
research domains to share similar model parameters.

Despite their own success, all the existing work on
impact forecasting are essentially for point prediction, to
predict the number of cumulative citations of a paper
in the future. They are not directly applicable to fore-
casting the impact pathway, e.g., citation counts in each
of the next 10 years. One baseline solution is to treat
the impacts across different years independently and to
train a separate model for each of the impacts. This
treatment might ignore the inherent relationship among
different impacts across different years, and thus might
lead to sub-optimal performance. Having this in mind,
a better way could be to apply the existing multi-label
learning [29] or multi-task learning [6] methods to ex-
ploit the relation among impacts across different years.
Nonetheless, these general-purpose multi-label/multi-
task learning approaches might overlook some unique
characteristics of the impact pathway prediction, which
is exactly the focus of this paper.

In this paper, we aim to develop a new predictive
model tailored for scholarly entity impact pathway
prediction. To be specific, our model will focus on the
following two design objectives:

• D1. Prediction Consistency. Intuitively, the
scholarly impacts at certain years might be corre-
lated with each other, which, if vetted carefully,
could boost the prediction performance (i.e., multi-
label or multi-task learning). Here, one difficulty
for impact pathway prediction is that such a rela-
tion structure is often not accurately known a prior.
Thus a good predictive model should be capable of
simultaneously inferring the impact relation struc-
ture from the training data and leveraging such
(inferred) relation to improve the prediction per-
formance.



• D2. Parameter Smoothness. For a given fea-
ture of the predictive model, we do not expect
its effect on the impacts of adjacent years would
change dramatically. For instance, the effect of “fit-
ness” defined in [22], capturing a scientific work’s
perceived novelty and importance, is unlikely to
change greatly but rather gradually fade away over
years. A good predictive model should be able to
capture such temporal smoothness.

We propose a new predictive model (iPath) to si-
multaneously fulfill these two design objectives. First,
we propose to exploit the prediction consistency (i.e.,
D1) in the output space. Second, to encode the param-
eter smoothness (i.e., D2) between adjacent time steps,
we impose a linear transition process in the parameter
space from one time step to the next. We formulate it
as a regularized optimization problem and propose an
effective alternating strategy to solve it. Our method is
flexible, being able to handle both linear and non-linear
models.

The main contributions of the paper can be sum-
marized as follows:

• Problem Definitions. We define a novel schol-
arly impact pathway prediction problem, to predict
the impact of a scholarly entity at several consecu-
tive time steps in the future.

• Algorithm and Analysis. We propose and
analyze a new predictive model (iPath) for the
impact pathway forecasting problem.

• Empirical Evaluations. We conduct extensive
experiments to validate the effectiveness of the
proposed algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 formally defines the pathway to impact forecast-
ing problem. Section 3 introduces the proposed algo-
rithm. Section 4 presents some analysis and comparison
with existing work. Section 5 provides the experimen-
tal results. Section 6 reviews related work and Section 7
concludes the paper.

2 Problem Definition

In this section, we first present the notations used
throughout the paper (summarized in Table 1) and
then formally define the pathway to impact forecasting
problem.

We use bold upper-case letters for matrices (e.g.,
A), bold lowercase letters for vectors (e.g., v), and
lowercase letters (e.g., α) for scalars. For matrix
indexing, we use a convention similar to Matlab’s syntax
as follows. We use A(i, j) to denote the entry at the
intersection of the i-th row and j-th column of matrix

Table 1: Symbols

Symbols Definition

n number of scholarly entities
d feature dimension, i.e., number of time

steps observed
l length of the forecasting horizon into

the future
wi model parameter for predicting the i-th

impact
X feature matrix
Y impact matrix
A adjacency matrix of the impact graph
A0 prior knowledge of the impact graph

structure
B transition matrix
K kernel matrix
E energy function

Φc(·) the potential defined on a maximal
clique c

A, A(i, :) to denote the i-th row of A and A(:, j) to
denote the j-th column of A. Besides, we use prime for
matrix transpose (e.g., A′ is the transpose of A).

For a given scholarly entity (e.g., research papers,
researchers, conferences), after observing the impacts
in the first few years, we want to forecast its impacts
in the next several years (e.g., 10 or 20 years) into
the future. Formally, denote x ∈ Rd as the impacts
observed in the first d time steps, we want to predict
the impact pathway y = (y1, y2, . . . , yl)

′ afterwards,
where yi is the citation count in the i-th future time
step, and l is the length of the horizon we want to look
into the future. Mathematically, the task is to learn
a predictive function f : x → y from the training set
D = {(xi,yi)|i = 1, 2, . . . , n}, where n is the number of
training samples. For convenience, let X be the feature
matrix by stacking all the features (i.e., impact values
of the first d time steps) of the n scholarly entities as
its rows, that is, X = [x1,x2, . . . ,xn]′. Similarly, let Y
be the impact matrix by stacking all the impacts (i.e.,
values of all the l future time steps) of the n scholarly
entities as its rows, that is, Y = [y1,y2, . . . ,yn]′.

With the above notations, we formally define the
pathway to impact forecasting problem as follows:

Problem 1. Pathway to Impact Forecasting

Given: feature matrix X and impact matrix Y of n
scholarly entities.

Predict: the impacts in each of the continuous future
time steps of a new scholarly entity.



Remarks: At the high-level, this problem setting
bears some similarities to the classic multi-label learn-
ing [29] or multi-task learning [6] (i.e., predicting each
impact is treated as a task). Nonetheless, the impact
pathway of a scholarly entity brings several unique char-
acteristics as outlined in the Introduction, which in turn
calls for a new method to solve it.

3 Proposed Algorithms

In this section, we present a predictive model to forecast
the pathway to impact. We first formulate it as a
regularized optimization problem, and then propose an
effective alternating optimization algorithm to solve it.

3.1 iPath Formulations
Let us first summarize the key ideas behind our

proposed formulation. First, we want to leverage the
relation across the impacts at different time steps, so
that closely related impacts are likely to have consistent
predicted outputs. The relation among the impacts
at different time steps is encoded in a non-negative
matrix A, where the entry Aij is a large positive value
if the i-th impact and j-th impact are closely related.
The matrix A can be regarded as the weight matrix
of the impact relationship graph, where vertices are
impacts at different time steps and edge exists between
two similar impacts. Second, one difficulty is that the
impact relation might not be accurately known a prior.
We address this by inferring a good relation that can
benefit the prediction performance, while not deviating
too far from the (noisy) prior knowledge of the relation.
Third, as we mentioned in the problem definition, we
focus on the impact pathway forecasting, where the
effect of features on the impacts at adjacent time steps
is expected to transition smoothly. To realize such
smoothness, we impose a linear transition process B
between model parameters of adjacent time steps wt

and wt+1.
Putting all the above aspects together, our model

can be formulated as follows:
(3.1)

min
W,B,A

L[f(X,W),Y]︸ ︷︷ ︸
empirical loss

+α

l∑
i=1

l∑
j=1

Aijg(wi,wj)︸ ︷︷ ︸
prediction consistency

+β

l∑
t=2

‖wt −Bwt−1‖22︸ ︷︷ ︸
parameter smoothness

+ γ‖B− I‖2F + δ

l∑
i=1

Ω(wi) + ε‖A−A0‖2F︸ ︷︷ ︸
regularizations

where W is the parameter matrix of the prediction pa-

rameters for all the impacts as W = [w1,w2, . . . ,wl];
f(X,W) is the prediction function, which could be lin-
ear or non-linear, ; L(·) is the empirical loss between the
predicted impacts and actual impacts; g(wi,wj) char-
acterizes the prediction consistency between the i-th im-
pact and the j-th impact; ‖wt −Bwt−1‖22 instantiates
the parameter smoothness; the rest terms are regular-
izations on B, W and A respectively; A0 is the noisy
prior knowledge about the impact/label relation; and α,
β, γ, δ and ε are the trade-off parameters.

Remarks: the second term models the prediction
consistency. If the i-th impact and the j-th impact
are similar, i.e., Aij is a large positive number, then
the function value g(·) that measures the consistency
between the predicted values for the i-th and j-th
impacts should be small. In addition, to address the
challenge of inferring a good relation, we are learning
a relation A in the model by regularizing it not to
deviate too far from our prior knowledge of the impact
relation (A0). The third term models the parameter
smoothness by assuming a linear transition process
between model parameters at two adjacent time steps.
More specifically, the model parameter for time step t,
wt is close (in the form of Euclidean distance) to the
model parameter for the last time step with some linear
transition, Bwt−1. When B is an identity matrix, such
smoothness will be a small Euclidean distance between
the two parameters themselves. Our model will learn
the model parameters W, linear transition process B
and the impacts relation A jointly.

iPath – linear formulation: in the linear case, the
predictions are made by a linear weighted combination
of the features, where the offset is absorbed by adding
a constant to the feature. The linear model can be
formulated as follows:
(3.2)

min
W,B,A

‖XW −Y‖2F + α
l∑

i=1

l∑
j=1

Aij‖Xwi −Xwj‖22

+β
l∑

t=2
‖wt −Bwt−1‖22 + γ‖B− I‖2F

+δ
l∑

i=1

‖wi‖22 + ε‖A−A0‖2F

In this linear formulation, if Aij is a large positive
number, meaning the i-th impact and the j-th impact
are similar, then the predicted values for the i-th impact
Xwi and that for the j-th impact Xwj are consistent.

iPath – non-linear formulation: in the non-linear
case, the predicted impact is no longer a linear combi-
nation of the features, but the linear combination of the
similarities between the test sample and all the training
samples, where the similarities are expressed in the ker-
nel matrix K. The (i, j)-th entry of K can be computed



as K(i, j) = κ(X(i, :),X(j, :)), where κ(·, ·) is a kernel
function that implicitly computes the inner product in
the reproducing kernel Hilbert space (RKHS) [1]. The
non-linear model can be formulated as follows:
(3.3)

min
W,B,A

‖KW −Y‖2F + α
l∑

i=1

l∑
j=1

Aij‖Kwi −Kwj‖22

+β
l∑

t=2
‖wt −Bwt−1‖22 + γ‖B− I‖2F

+δ
l∑

i=1

w′iKwi + ε‖A−A0‖2F

From the objective function, we can see that if Aij is
a large positive number, meaning the i-th impact and
the j-th impact are similar, then the predicted values
for the i-th impact Kwi and that for the j-th impact
Kwj are consistent.

3.2 iPath Optimization Solutions
In this subsection, we introduce an effective alternat-

ing optimization strategy to solve iPath. Since the opti-
mization for linear and non-linear formulations are very
similar, we will focus on the non-linear case and omit
the linear case (referred to as iPath-lin) due to space
limit. In non-linear case, we need to solve Eq. (3.3),
which involves the optimization for W, B and A. We
apply an alternating strategy and each time optimize
for one group of variables while fixing the others. The
details are as follows:

#1. Optimize for W while others are fixed:
when others are fixed, the objective function becomes:

min
W

‖KW −Y‖2F + α
l∑

i=1

l∑
j=1

Aij‖Kwi −Kwj‖22

+β
l∑

t=2
‖wt −Bwt−1‖22 + δ

l∑
i=1

w′iKwi

As it turns out, it has the following fixed point
solution:

(3.4) vec(W) = S−1vec(K′Y)

where vec(·) is the vectorization operation on a matrix
by stacking the columns of a matrix into one column
vector, and S is a block matrix composed of l× l blocks.
The (i, j)-th block of S, Sij can be written as follows:
(3.5)

Sii =


(1 + α

∑l
j=1 Aij)K

′K+ βB′B+ δK, if i = 1

(1 + α
∑l

j=1 Aij)K
′K+ δK, if i = l

(1 + α
∑l

j=1 Aij)K
′K+ β(I+B′B) + δK, otherwise

(3.6) Sij =


−αAijK

′K− βB′, if i = j − 1
−αAijK

′K− βB, if i = j + 1
−αAijK

′K, otherwise

#2. Optimize for B while others are fixed: when
others are fixed, the objective function becomes:

min
B

β
l∑

t=2
‖wt −Bwt−1‖22 + γ‖B− I‖2F

It has the following fixed point solution:

(3.7) B = (β

l∑
t=2

wtw
′
t−1+γI)(β

l∑
t=2

wt−1w
′
t−1+γI)−1

#3. Optimize for A while others are fixed:
when others are fixed, the objective function becomes:

min
A

α
l∑

i=1

l∑
j=1

Aij‖Kwi −Kwj‖22 + ε‖A−A0‖2F

It has the following fixed point solution:

(3.8) A = A0 −D,where Dij = ‖Kwj −Kwi‖22.

The optimization solution for the non-linear model
can be summarized as in Algorithm 1.

Algorithm 1 iPath-ker – forecasting the pathway to
impact

Input: (1)feature matrix X;
(2)impact matrix Y;
(3)prior knowledge of the relation A0;
(4)balance parameters α, β, γ, δ and ε;

Output: model parameters wi, i = 1, . . . , l
1: Initialize W, B and A
2: Construct kernel matrix K from X
3: while not converged do
4: Update model parameters W by Eq. (3.4)
5: Update linear transition matrix B by Eq. (3.7)
6: Update impact relation A by Eq. (3.8)
7: end while
8: Output model parameters W

4 Analysis and Comparisons

In this section, we will first analyze the complexity of
the proposed iPath, present some variants of it, and then
provide a probabilistic interpretation for it, followed up
by the comparisons with some existing work.

4.1 Complexity Analysis
We summarize the time complexity of iPath-lin and

iPath-ker in Theorem 4.1.

Theorem 4.1. (Time Complexity). iPath-lin takes
O(N · (ndl2 + d3l3)) time, and iPath-ker ( Algorithm 1)
takes O(N · (n3l3 + n2l2)) time, where N is the number
of iterations.

Proof. Omitted for brevity.

Remarks: in both iPath-lin and iPath-ker, the num-
ber of iterations is small in practice (typically in 5-10



iterations, see Sec. 5 for details). In iPath-lin, each iter-
ation only takes linear time w.r.t. n. In iPath-ker, the
major computational cost in each iteration is the inverse
of a large matrix S in Eq. (3.4), which is of size nl by nl.
One way to speed up is by low-rank approximation on
such large matrix [14]. A top-r eigen-decomposition on
S takes O(n2l2r), where r is the rank. Then the inverse
will become the multiplication of the eigenvector matri-
ces and the inverse of the eigenvalue diagonal matrix,
which is very easy to compute. Another way to speed
up is to filter out those unpromising training samples.
When new training samples arrive, we can first treat
them as test samples and make predictions on them us-
ing the existing trained model. Those samples whose
prediction error is smaller than a specified threshold will
be discarded. In this way, the size of matrix S will also
be reduced.

4.2 Variants
The proposed iPath model is comprehensive in han-

dling both the prediction consistency as well as the pa-
rameter smoothness. In the case when one or both as-
pects are not necessary for the prediction in some appli-
cations, our model can be naturally adapted to accom-
modate such special cases. In this subsection, we will
discuss two of the variants.

Variant #1: known relation. If the relation among
the impacts are accurately known a prior, we can fix
the relation in the model instead of learning it. We can
do this by setting ε to 0 and plug in the known relation
matrix A. In the optimization solution, we only need
to optimize for W and B in this variant.

Variant #2: known relation without parameter
smoothness. In some cases, the parameter smoothness
might not hold and we do not need to consider the lin-
ear transition process between adjacent parameters. We
can set β, γ and ε to 0. This degenerates to the iBall
model proposed in [14]. It is a special case of our iPath
model without considering parameter smoothness and
with known relation. Another difference is that iPath
imposes the prediction consistency in the output space,
instead of in the parameter space.

4.3 Probabilistic Interpretation
In this subsection, we will provide a probabilistic inter-

pretation for iPath. Our algorithm can be represented
by the graphical model shown in Figure 1. The shaded
nodes Yi are the impacts observed, and in the linear
formulation they are linear combination of the features
with a multivariate Gaussian noise:

Yi = Xwi + e

e ∼ N (0, σ2
yI)

Yi|wi ∼ N (Xwi, σ
2
yI)(4.9)

For the model parameters wt, we assume it is a
linear transition of the parameter for the last time step
wt−1, with a multivariate Gaussian noise:

wt = Bwt−1 + ε

ε ∼ N (0, σ2
wI)

wt|wt−1 ∼ N (Bwt−1, σ
2
wI)(4.10)

The relation among the impacts is represented as
an undirected graph of different impacts Yi, with A as
the weight matrix. If the i-th impact Yi and the j-th
impact Yj are similar to each other, then the (i, j)-
th entry Aij is a large positive number. To define
the distribution over this undirected graph of impacts,
we refer to Hammersley-Clifford theorem in Markov
Random Field (MRF) [2] and express it in terms of
an energy function E and clique potentials defined on
maximal cliques of the undirected graph as:
(4.11)

p(Y) =
1

Z
exp(−E(Y)),where E(Y) =

∑
c∈C

Φc(Yc).

Here C is the set of maximal cliques of the impact graph,
Φc is a non-negative function defined on the random
variables in the clique and Z is the partition function
to ensure that the distribution sums to 1. If we only
consider the potentials defined on the edge of the graph,
as follows:

(4.12)
Φe=(Yi,Yj) = Aij‖Yi −Yj‖22

= Aij‖Xwi −Xwj‖22

Then, the distribution over the label graph is:

(4.13) p(Y) =
1

Z
exp(−

l∑
i=1

l∑
j=1

Aij‖Xwi −Xwj‖22)

With these distributions defined, we aim to maxi-
mize the joint distribution described as follows:
(4.14)

arg max
Y,X,W

= p(w1)
∏l

t=2 p(wt|wt−1)
∏l

i=1 p(Yi|wi)p(Y)

where we assume p(w1) ∼ N (0, σ2
1I). If we maximize

the above joint distribution, we can obtain the empirical
loss, prediction consistency and parameter smoothness
terms in iPath.

4.4 Comparison with Existing Work
As we point out in Sec. 4.2, iBall [14] is a special case

of our iPath model. The idea of iBall is to leverage
the relation among impacts in the parameter space,
i.e., if Yi and Yj are similar, then the parameters
wi for predicting Yi and wj for predicting Yj are
similar. The multi-label learning method MLRL [29]
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Figure 1: Graphical model representation of iPath.

also exploits such relation in the parameter space via
maximum a posterior inference by assuming that W
follows a matrix-variate normal distribution, but ignores
the parameter smoothness. Our model iPath instead
applies such relation in the output space and defines
a linear transition process between two parameters at
adjacent time steps.

5 Empirical Evaluations

In this section, we empirically evaluate the effectiveness
of the proposed algorithms for forecasting the pathway
to impact.

5.1 Datasets
To evaluate the performance of the proposed iPath al-

gorithms, we conduct experiments on the real world ci-
tation network dataset provided by AMiner [19] 1, which
is a rich dataset for bibliography network analysis and
mining. The dataset contains information of 2,243,976
papers, 1,274,360 authors and 8,882 computer science
venues. The information about a paper includes its title,
authors, references, venue and publication year. The pa-
pers date from year 1936 to year 2013. From these, we
can extract the number of citations each paper/author
obtains in each year ever since its publication year.

5.2 Experiment Setup
Our primary task is to forecast a paper’s yearly cita-

tions from year 6 to year 15 after its publication, with
the first five years’ citation history observed. To ensure
the papers are at least 15 years old, we only keep papers
published between year 1960 and 1998. We process the
author data in a similar way and keep those whose re-
search career begins (when they publish the first paper)
between year 1960 and 1990. For each scholarly entity
(paper and author), we represent it as a five dimensional
feature vector, which is the yearly citation counts in the
first five years. To evaluate our algorithm, we sort the
scholarly entities by their starting year (e.g., publica-

1https://aminer.org/billboard/citation

tion year), and train the model in the older entities and
always test on the latest ones. In the experiment, we
incrementally add the training samples by this chrono-
logical order, and for the paper impact pathway pre-
diction, we reserve the latest 10% samples as the test
set; and for the author impact pathway prediction, we
reserve the latest 6% samples as the test set.

Root mean squared error (RMSE) between the
actual citations and the predicted ones is used as our
accuracy evaluation. All the parameters, including the
Gaussian kernel’s bandwidth, are chosen through a grid
search. All the experiments are run on a Windows
machine with four 3.5 GHz Intel Cores and 256 GB
RAM.

5.3 Results and Analysis
1. Paper and author impact pathway prediction per-

formance. We compare the prediction accuracy of the
following methods:

• ind-linear: train a liner ridge regression model for
the impact in each year separately.

• ind-kernel: train a kernel ridge regression model for
the impact in each year separately.

• MTL-robust: treat predicting the impact in each
year as a task and apply the robust multi-task
learning algorithm proposed in [6].

• MLRL: the multi-label learning method proposed
in [29], where model parameters are assumed to
conform matrix-variate normal distribution.

• iBall-linear: jointly learn the linear regression
models as in [14].

• iBall-kernel: jointly learn the kernel ridge regres-
sion models as in [14].

• iPath-lin: the proposed linear predictive model
with prediction consistency and parameter smooth-
ness.

• iPath-ker: the proposed non-linear predictive
model with prediction consistency and parameter
smoothness.

The RMSE results of the above methods for pre-
dicting the impact pathway of both research papers
and authors are in Figure 2 and 3, respectively. We
can make the following observations: (1) the non-linear
methods (ind-kernel, iBall-kernel and iPath-ker) gener-
ally perform better than the linear methods (ind-linear,
MTL-robust, MLRL, iBall-linear and iPath-lin), which
reflects that the impacts could be over simplified by a
linear combination of the features. (2) Among the lin-
ear methods, we find that MTL-robust does not help
improve the prediction over ind-linear. The possible



reason is that MTL-robust has the assumption that the
model parameters admit a low-rank and sparse compo-
nent, which might not be true in our case. The iBall-
linear performs better than ind-linear, which shows that
the impact relation exploitation can indeed help the
forecasting. (3) Furthermore, learning a good relation
can further boost the performance, as MLRL has lower
RMSE than iBall-linear. Our iPath-lin performs the
best among all the linear models, by integrating predic-
tion consistency and parameter smoothness. It is even
comparable with ind-kernel when training size is greater
than 30% for the paper impact pathway prediction. (4)
We can make the similar observation in the non-linear
case, as our iPath-ker performs better than iBall-ker,
which itself is better than ind-kernel.

To evaluate the statistical significance, we perform a
t-test between iPath-ker and the best competitor iBall-
kernel with 30% of the training papers in the paper
impact pathway prediction, and the p-value is 0.01,
which suggests the significance of the improvement.
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Figure 2: RMSE comparison of all the methods for
paper impact pathway prediction.

2. Sensitivity analysis. To investigate parameter
sensitivity, we perform parametric studies with the two
most important parameters in iPath, namely, α that
controls the importance of prediction consistency, and β
that controls the importance of parameter smoothness.
Figure 4 shows that the proposed model is stable in a
large range of both parameter spaces.

3. Performance gain analysis. Let us take a
closer investigation on where the performance gain
of the proposed iPath stems from. As we mention
above, iPath integrates both prediction consistency and
parameter smoothness. We analyze how they contribute
to the performance gain. Table 2 shows the results of
iPath-ker methods on both the paper (60% training)
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Figure 3: RMSE comparison of all the methods for
author impact pathway prediction.
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Figure 4: Sensitivity study on iPath-lin: study the effect
of the parameters α and β in terms of RMSE.

and author (25% training) impact pathway prediction.
‘Basic form’ sets α, β, γ and ε all to zero, essentially
ind-kernel method; ‘Basic form + relation’ incorporates
the relations among impacts; ‘Basic form + relation
+ transition’ incorporates a known relation and the
linear transition in the parameter space; ‘Basic form
+ relation + transition + inferring’ considers them
all with an inferred relation. From the table, we can
see that as we incrementally incorporate the elements,
the RMSE decreases gradually, which confirms that all
these elements are beneficial in improving the prediction
performance.

Table 2: Performance gain analysis of iPath. Smaller is
better.

RMSE Paper Impact Author Impact

Basic form 9.602 11.608
Basic form + relation 9.507 11.548

Basic form + relation + transition 9.335 11.489
Basic form + relation + transition + inferring 9.171 11.391

4. Robustness to noise in label graph. As iPath
can learn a good relation for the prediction from our
prior knowledge about the relation, we want to see how
robust it is wrt the noise level in our prior knowledge.
To this end, we input the same relation matrix with



noise to iBall (the matrix A) and iPath (the matrix
A0). The noise is added to each entry of the label matrix
with value 0.1×NoiseLevel×rand, where rand is a
random number from 0 to 1. Figure 5 shows the RMSE
results of both iBall and iPath under different noise
levels for paper impact pathway prediction with 30%
training samples. We observe a sharp performance drop
of iBall when noise is added. In contrast, the proposed
iPath degenerates gradually with the noise level. This
shows that iPath can learn a relatively good relation
even if our prior knowledge is noisy.
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Figure 5: Robustness to noise on the label graph.

5. Convergence analysis. To see how fast the pro-
posed iPath converges in practice, we plot the objective
function value vs. number of iterations for both paper
(15% training samples) and author (10% training sam-
ples) impact pathway forecasting as in Figure 6. We
observe that iPath converges after 5-10 iterations.
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Figure 6: Convergence analysis of iPath.

6 Related Work

In this section, we review the related work in terms of
(a) multi-label learning, (b) time series mining.

Multi-label Learning. Multi-label learning is a
machine learning paradigm where each data instance is
associated with a set of labels. For example, in im-
age classification, an image could be tagged as nature,
ocean and sky; in document categorization, a text might
belong to politics and foreign affairs. The algorithms

developed for multi-label learning can be roughly cate-
gorized into two groups by a recent survey [28]: prob-
lem transformation methods, to fit data to existing al-
gorithms; and algorithm adaptation methods, to adapt
existing learning technique to fit the multi-label data. In
the first category, binary relevance [3] trains an individ-
ual classifier for each of the labels separately, which ig-
nores label correlations and might suffer class imbalance
issue. Classifier chains [18] on the other hand incremen-
tally build classifier for each of the labels by augment-
ing the feature space using preceding predicted labels.
The multi-label problems can be also modeled as a la-
bel ranking problem through the technique of pairwise
comparison [9], essentially binary classifiers trained in
one-vs-one fashion. In the second category, multi-label
k-nearest neighbor algorithm [27] combines kNN and
Bayesian reasoning to make prediction based on label-
ing information in the neighbors. Decision tree has also
been adopted to handle multi-label data by comput-
ing the multi-label entropy [7]. Rank-SVM [8] employs
maximum margin strategy to define linear models that
minimize the ranking loss while having a large margin
and enjoying non-linear extension through kernel trick.

Recently, there is a line of work focused on exploit-
ing the relationship among the labels to improve the
learning performance. Zhang and Yeung [29] propose a
probabilistic model for multi-label learning by assum-
ing that the model parameters follow a matrix-variant
normal distribution and the label relationship learn-
ing becomes solving for the column covariance matrix
in the maximum a posteriori (MAP) solution. Huang
and Zhou [11] notice that some label correlations are
not shared globally and propose approach that allows
correlation sharing in a subset of instances. Ji et
al. [12] assume that the model parameters share a low-
dimensional subspace and formulate a regularized opti-
mization problem.

Time Series Mining. Time series data are ubiqui-
tous and can be seen in meteorology, finance, medicine,
music, etc. Distance measures for time series include
the classic Euclidean distance, and more sophisticated
dynamic time warping [13] and longest common subse-
quence [21]. Many algorithms have been developed on
time series for clustering [25, 15], classification [26, 10],
anomaly detection [23] and motif discovery [17, 16]. Re-
cently, time series has been studied from the perspective
of network, e.g., Cai et al. [4, 5] propose the concept of
network of (high-order) time series to capture the con-
textual information for better missing value recovery.
7 Conclusions

We focus on the problem of forecasting the impact
pathway of scholarly entities, and propose an effective
method (iPath). The proposed iPath can collectively



model two important aspects of the impact pathway
prediction problem, namely, prediction consistency and
parameter smoothness. It is flexible for handling both
linear and non-linear models and empirical evaluations
demonstrate its effectiveness for forecasting the path-
way to impact. Future work includes the deployment
of iPath in real scholarly data mining systems, e.g.,
AMiner2.
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