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Important implications of high-impact scientific work:
- personal career development

- recruitment search

- jurisdiction of research resources

Question: how to forecast the long-term impact at

the early stage?
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Challenges

= C1: Scholarly feature design
= C2: Non-linearity

= C3: Domain heterogeneity

= C4: Dynamics

I DL‘;'LA Arizona State University

@—====



C1: Scholarly Feature Design
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Obs: Adding content features brings little improvement
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C2: Non-linearity
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Obs: Non-linear methods outperform linear ones
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C3: Domain heterogeneity
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Obs: Impact of scientific work from different domains
behaves differently
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C4: Dynamics

arXiv monthly submission rates

# Submissions
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Question: How to quickly update the predictive model?
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Roadmap
= Motivations

s Proposed Solutions: iBalli
= EXperimental Results
= Conclusions
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iBall — Formulations

= Optimization Formulation =

Within-Domain Model

min
w(i),izl,...,nd

Cross-Domain
Consistency

= Remarks

= Within-Domain Model: regression/classification, linear/non-linear

= Cross-Domain Consistency: similar domains have similar models

Question: how to instantiate such consistency?
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iBall — linear formulation

nd ; : : d .
1o [ min L IXOw - YO+ wl
Detalls: W(i),Z:1,...,nd ) —1]

ng ng

0. Z Ajf wt
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Intuitions:similar domain (large A;; )

—p same feature has similar impact (small [|[w® — w@|2)

10 : DL‘;LA Arizona State University



iBall — non-linear formulation
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Details:

Predicted output Predicted output
(domain i — domain j) (domain j—domain i)

Intuitions: similar domain (large A ;)

—p similar predicted outputs (small [[KVw® — K wd))2)
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iBall — Closed-form Solutions

= Closed-form Solution

—1
w=9S"Y
= Ball — linear:
e [W(l); . ;W<nd)] Y = [X(l)/Y(l); . X(nd)/Y(nd)]
i-th block column j-th block column
: : nd i- ocC
S=1... X(I)IX(I) + (6 Z Aij + )\)I —HAiJ-I th bloci
=1 rOwW

2 Cl . feature dim 1ld : # of domains
Time Complexity: O((dnd) ) dng is in the order of 10 or 100
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iBall — Closed-form Solutions

= Closed-form Solution
w=S"1Y

= |Ball — non-linear:

W — [W(1>;...;W(nd)] Y — [Y(l);...;Y(nd)]
i-th block column j-th block column
S i i i-th block
S=1... (1 -+ 0 Z AIJ)K(I) + N | _HAIJK(IJ) 1-t ocC
J=1 row

T : total # of training samples
Tl is in the order of millions

Time Complexity: O(n?)
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iBall — Scale-up with Dynamic Update

= Key idea #1: Approx S by low-rank approx
= Details:

S, AU Wil :St_llYt—H
11 R U Ay Uy, e *

= Ui A Up Ye
(Overall: O(n?r)) (Overall: O(nr) )
» Complexity: O(n*) = O(n?r + nr)
= Benefit: avoid matrix inverse

Question: how to avoid re-computing low-rank
approx at each time step?
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iBall — Scale-up with Dynamic Update

= Key idea #2: Incrementally update the low
rank structure of S

« Details: IR HENE
e HER - EEN
blue old at ¢ . . . . . .

Syt S, AS

(low rank, sparse)
= Complexity: 0(n’) = 0((n+m)(r* ++),r < n

= Benefit: avoid re-computing low-rank approx

Liangyue Li, Hanghang Tong, Yanghua Xiao, Wei Fan. Cheetah: Fast Graph
LN Kernel Tracking on Dynamic Graphs.(SDM), 2015.
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Roadmap
= Motivations

= Proposed Solutions: iBall
= Experimental Results
= Conclusions
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Experiment Setup

» Datasets: AMiner' (2,243,976 papers,
1,274,360 authors, 8,882 venues)

= Evaluation Metric: Root Mean Squared
Error (RMSE)

= Evaluation Objects:
= Effectiveness
= Efficiency

1 https://aminer.org/billboard/citation
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Paper Citation Prediction Performance

1.8 T T T T T T T

—7/— iBall-fast

| - iBall-kernel

O 1.7L Kernel-separate

| - | =3¢ Kernel-combine

| - iBall-linear
LIJ 1.6 Linear—separate
. ®) et Linear-combine

—¥— Predict 0
9 1.5 + Sum of first 3 years ||
O-: 1.4 .
1.3F -

c

D 12 i
= |
- 11 .

8 4 G < G o— 7 G < G G < G < < G < G P
m 1k I S % _

v——’__—; — - 4 e 4 ey pr = — — = 7, IBaII
v R o e /} .
0.9 ! ! ! ! ! ! ! ! ! ‘ non-linear
1004 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Proposed Sol. Training Size

Obs: iBall family joint models better than separate versions
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Venue Citation

Prediction Performance
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Obs: iBall family joint models better than separate versions
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'pick u'p fast in early yearS

Error Analysis ] M —
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Running Time Comparison
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Obs: iBall-fast outperforms other non-linear methods
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Quality vs. Speed
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Obs: iBall-fast: good trade-off between quality and speed
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Roadmap
= Motivations

= Proposed Solutions: iBall
= Experimental Results
s Conclusions
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Conclusions

= Goals: predict long-term impact of scholarly entities
= Solutions: joint predictive model (iBall)

Challenges @featl_lre @non-_ @domain-_ dynamics
design linearity | heterogeneity
: first 3 years’| kernel domain low-rank
Tactics D : ; : :
citation trick consistency |approximation
= Results:

= [Ball joint models better than separate versions
= |Ball-fast updates efficiently and accurately

= More

in paper:

= correctness and error bound analysis
= significance and sensitivity tests
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